1. Introduction

In the recent decade, a new class of numerical methods, meshless methods (also called mesh-free methods), have been developing fast [1, 2]. These methods have become an important tool in computational solid mechanics, owing to their advantages over the traditional finite element method (FEM), finite-volume method (FVM), and finite-difference method (FDM). Meshless methods rely only on a group of scatter points, which means not only that the burdensome work of mesh generation is avoided, but also more accurate description of irregular complex geometries can be achieved. Furthermore, the meshless approximation has higher smoothness, and no additional post-processing is needed.

In the field of meshless methods for solving elasticity problems, Krysl and Belytschko [3] employed Element-Free Galerkin Method (EFGM) to analyze thin plates; Onate et al. [4] proposed a stabilization technique by introducing new terms in both the governing equations and the traction boundary conditions to solve elasticity problems; Kwon et al. [5] presented a least-squares meshfree method for solving linear elastic problems; Zhang et al. [6] proposed a meshless weighted least-squares (MWLS) method, to solve problems of elastostatics; Atluri et al. proposed a MLPG mixed collocation method [7] and MLPG mixed finite difference method [8] for solid mechanics.

All the above meshless methods can be categorized into two groups according to their discretization scheme. The first group is Galerkin-based meshless methods (GBMMs), of which the EFGM proposed by Belytschko in 1994 [9] is a famous representative. In GBMMs, the highest order of derivatives is lowered by using a weak form of the original partial differential equations (PDEs). The accuracy of GBMMs is high, and good stability can always be obtained. The main shortcoming of GBMMs is that the integrals in the weak form must be evaluated properly. One way of evaluating integrals is to use a background mesh, which makes the method not truly meshless; another is to use nodal integration [10], which results in significant errors because the divergence theorem used in the establishment of the weak form demands accurate integration [11]. In addition, because meshless shape functions are too complex to be expressed in closed form, a delicate background mesh and a large number of
quadrature points are always employed, which decreases the efficiency seriously. As a consequence, GBMMs are much more computationally expensive than the FEM.

The other group of meshless methods is built on collocation schemes. The SPH, FPM, DAM, least-square collocation meshless method [12], point weighted least-square (PWLS) method [13], and radial basis function (RBF) collocation methods [14–17] all belong to this group. These methods are very efficient and easy to program, but they usually suffer from poor stability, and the accuracy often goes down near the boundary.

The universal law of least squares can also be used for discretization. In fact, it has been introduced into the FEM successfully [18]. A truly meshless method based on the least-squares approach, the collocation discrete least-squares (CDLS) method, was proposed to solve Poisson’s equation [19] and free surface seepage problem [20] and also was presented for error estimation and adaptive refinement [21]. In this paper CDLS method, already used for the solution of hyperbolic problems, is extended for solving elasticity problems. In the present CDLS method, the problem domain is discretized by distributed field nodes. The field nodes are used to construct the trial functions by employing the moving least-squares interpolant. Some collocation points that are independent of the field nodes are used to form the total residuals of the problem. The least-squares technique is used to obtain the solution of the problem by minimizing the summation of the residuals for the collocation points. Because of using the least-squares technique and more collocation points the CDLS method is not bothered by instability as collocation-based meshless methods.

In this article, the CDLS method is extended to solve elasticity problems. Constructing of moving least square shape functions is explained in Section 2; discretization of equilibrium equations in solid mechanics using collocation discrete least square (CDLS) method is described in Section 3; numerical examples are demonstrated in Section 4; and some concluding remarks are presented in Section 5.

2. Moving least square shape functions

Among the available meshless approximation schemes, the moving least squares (MLS) method [22] is generally considered to be one of the best methods to interpolate random data with a reasonable accuracy, because of its completeness, robustness and continuity [7, 23]. With the MLS interpolation, the unknown function Φ is approximated by:

$$\Phi(x) = \sum_{i=1}^{m} P_i(x) a_i(x) = P^T(x) a(x)$$ \hspace{1cm} (1)

Where $P_i(x)$ is a polynomial basis in the space coordinates, and m is the total number of the terms in the basis. For a 2D problem we can specify $P = [1 \ x \ x^2 \ y \ y^2]$ for $m=6$. $a(x)$ is the vector of coefficients and can be obtained by minimizing a weighted discrete L_2 norm as follows:

$$J = \sum_{i=1}^{m} w_j (x-x_j)(P^T(x) a(x) - u_j)^2$$ \hspace{1cm} (2)

The weight function $w_j(x-x_j)$ is usually built in such a way that it takes a unit value in the vicinity of the point j where the function and its derivatives are to be computed and vanishes outside a region Ω_j surrounding the point x_j. In this research the cubic spline weight function is considered as follows:

$$w(x-x_j) = \begin{cases} 1 & \text{for } \frac{j}{2} \leq |x-x_j| \leq \frac{1}{2}, \\ \frac{1}{3} \left(2 - |x-x_j| \right)^3 & \text{for } \frac{1}{2} \leq |x-x_j| \leq 1, \\ 0 & \text{for } |x-x_j| > 1 \end{cases}$$ \hspace{1cm} (3)

Where d is the size of influence domain of point x_j.

Minimization of equation (2) leads to

$$\Phi(x) = P^T(x) A^{-1}(x) B(x) \Phi^b$$ \hspace{1cm} (4)

where

$$A(x) = \sum_{j=1}^{n} w_j(x-x_j) P(x_j) P^T(x_j)$$ \hspace{1cm} (5)

$$B(x) = [w_1(x-x_1)P(x_1), w_2(x-x_2)P(x_2), \ldots, w_n(x-x_n)P(x_n)]$$ \hspace{1cm} (6)

Comparing equation (4) with the well known
form of equation (7) yields to equation (8)

$$\Phi(x) = N^T(x)\Phi$$ \hspace{1cm} (7)

$$N^T(x) = P^T(x)A^{-1}(x)B(x)$$ \hspace{1cm} (8)

$$N^T(x)$$ Contains the shape functions of nodes at point (X) which are called moving least square (MLS) shape functions.

3. Collocation Discrete least square (CDLS) method

Consider the following (partial) differential equation

$$A(\Phi) + f = 0 \quad \text{in } \Omega$$ \hspace{1cm} (9)

subject to appropriate Drichlet and Neumann boundaries.

$$\Phi - \Phi = 0 \quad \text{on } \Gamma_s$$ \hspace{1cm} (10)

$$B(\Phi) - \tilde{r} = 0 \quad \text{on } \Gamma_t$$ \hspace{1cm} (11)

Where A and B are (partial) differential operators, and f represents external forces or source term on the problem domain.

Upon discretization of the problem domain and its boundaries using Equation (7) defined as the residual of partial differential equation at a typical collocation point k is:

$$R_{k_i}(x) = A(\Phi(x_i)) + f(x_i) = \sum_{j=1}^{n} A(N_j(x_i))\Phi_j + f(x_i)$$ \hspace{1cm} (12)

k = 1 = M

the residual of Neumann boundary condition at typical collocation k on the Neumann boundary can also be written as:

$$R_{k_i}(x) = B(\Phi(x_i)) - \tilde{r}(x_i) = \sum_{j=1}^{n} B(N_j(x_i))\Phi_j - \tilde{r}(x_i)$$ \hspace{1cm} (13)

k = 1 = M

and finally the residual of Drichlet boundary condition at nodes on the Drichlet boundary could be stated by:

$$R_{k_i}(x) = \Phi - \Phi(x_i) = \sum_{j=1}^{n} N_j(x_i)\Phi_j - \Phi(x_i)$$ \hspace{1cm} (14)

k = 1 = M

where n is the total number of nodes, M is the internal collocation points, \(M_x\) is the collocation points on the Neumann boundary, \(M_u\) is the collocation points on the Dirichlet boundary and \(M\) is the total number of collocation points. A penalty approach is used to form the total residual of the problem defined as:

$$I = \sum_{i=1}^{M} (R_{k_i}(x_i)) + a_1 \sum_{i=1}^{M} (R_{k_i}(x_i)) + a_n \sum_{i=1}^{M} (R_{k_i}(x_i))$$ \hspace{1cm} (15)

$$I = \sum_{i=1}^{M} \sum_{j=1}^{n} \left[A(N_j(x_i))\Phi_j + f(x_i) \right] + a_1 \sum_{i=1}^{M} \sum_{j=1}^{n} \left[B(N_j(x_i))\Phi_j + \tilde{r}(x_i) \right] + a_n \sum_{i=1}^{M} \sum_{j=1}^{n} \left[(N_j(x_i))\Phi_j + \Phi(x_i) \right]$$ \hspace{1cm} (16)

Where \(a_1\) and \(a_n\) are penalty coefficients for Neumann and Drichlet boundary conditions respectively. To impose the boundary conditions exactly, the penalty factor must be infinite, which is not possible in practical numerical analysis [24]. Therefore, in the penalty method boundary conditions can not be satisfied exactly, but only approximately. In general, the use of a larger penalty factor will lead to better enforcement of the constraint. On the other hand, if the penalty factor is too small, the constraints will not be properly enforced, but if it is too large, numerical problems will be encountered. A compromise should, therefore, be reached. Penalty coefficients set to be \(10^8\) in this research.

Minimization of the functional with respect to nodal parameters \((\Phi_i, i = 1, 2, ..., n)\) leads to the following system of equations.

$$K\Phi = F$$ \hspace{1cm} (17)

where

$$K = \sum_{i=1}^{M} A(N_j(x_i))A(N_j(x_i)) + a_1 \sum_{i=1}^{M} B(N_j(x_i))B(N_j(x_i)) + a_n \sum_{i=1}^{M} N_j(x_i)N_j(x_i)$$ \hspace{1cm} (18)

$$F = \sum_{i=1}^{M} A(N_j(x_i))f(x_i) + a_1 \sum_{i=1}^{M} B(N_j(x_i))\tilde{r}(x_i) + a_n \sum_{i=1}^{M} N_j(x_i)\Phi(x_i)$$ \hspace{1cm} (19)
the stiffness matrix K in Eq. (17) is square ($N \times N$) and symmetric. Therefore, the final system of equations can be solved directly via efficient solvers.

4. Numerical examples

In this section, some 2D numerical examples, which are solved by the CDLS method, are presented. The examples include: 1) the patch test, 2) a cantilever beam under end point load, and 3) an infinite plate with a circular hole under uniaxial load. Problems 2 and 3 are solved using regular nodal distributions. For information about the influence of the irregular nodal configuration on the CDLS performance see [26].

4.1 The Patch Test

The standard patch test: a rectangle under uniform tension load (see Fig. 1) is solved as the first example. The material parameters are as follows: the Young’s modulus $E = 1000.0$, and the Poisson’s ratio $\nu = 0.3$. Plane stress condition is assumed for the 2D problem and 9 nodes are used. Two nodal configurations are used for the testing: one is regular, and another is irregular, as shown in Fig.1. The proper displacement constraints are applied to the bottom edge.

The simulation results show a linear displacement on the lateral edges, and constant displacement on the top edge; the normal stress in the loading direction is constant and there is no shear stress in the solution domain.

4.2 Cantilever Beam

In the second example, we solve a cantilever beam under a point load at the end, as shown in Fig.2. For this problem, the exact stress and displacement solution for plane stress is given in Timoshenko and Goodier [25] as

$$
\sigma_y = -\frac{P(L-x)}{I}y
$$

$$
\sigma_x = 0
$$

$$
\tau_{xy} = \frac{P}{2I}[c^2 - y^2]
$$

and

$$
\mu = -\frac{Py}{6EI}[3x(2L-x) + (2 + \nu)(y^2 - c^2)]
$$

$$
\nu = \frac{Py}{6EI}[x^2(3L-x) + 3\nu(L-x)y^2 + (4 + 5\nu)c^2x]
$$

where the moment of inertia $I = 2c^2/3$ for a beam with rectangular cross-section and unit thickness. The problem is solved using the CDLS method under plane stress condition with the following constants: $P = 1$, $E = 1000$, $c = 2$, $L = 24$, and $\nu = 0.3$.

Regular uniform nodal configurations with nodal distances, d, of 1.0, 0.5, and 0.25 are used. The corresponding numbers of nodes are 125, 441, and 1649, respectively. The nodal configurations are shown in Fig.3. This problem is simulated using the MLS with the second order polynomial basis. Fig.4 shows the vertical displacement along the central line of the beam for the nodal configuration with $d = 1.0$. The simulation prediction agrees with the analytical solution very well. Fig.5 shows the shear stress distribution of cantilever beam at $x=L/2$ for the three nodal configurations with $d = 1.0$, $d = 0.5$ and $d = 0.25$ and a very good agreement with the analytical solution is obtained. The Contours of σ_z stress and the vertical displacement for the nodal configuration with $d = 0.25$ are shown in
Fig.6 and 7 respectively. The convergence rate is studied with three nodal configurations (d =1.0, 0.5, and 0.25). The following H1 error norm are used for showing the convergence rate in Fig.8.

\[
\|e\|^2 = \sum_{i=1}^{N} \left[(u_i^h - u_i)^2 + (v_i^h - v_i)^2 + (\sigma_{xx}^h - \sigma_{xx})^2 + (\sigma_{yy}^h - \sigma_{yy})^2 \right] \] \quad (22)
\]

Where N is number of nodes. The results clearly show that a stable convergence rate is obtained for the present CDLS method.

4.3 Infinite Plate with a Circular Hole

Finally, we show the computational results of an infinite plate with a circular hole subjected to a uniaxial traction P at infinity as shown in Fig.9. The exact solutions for stresses and displacements for this problem are

\[
\sigma_x = P \left[\frac{a^2}{r^2} \left(\frac{1}{2} \cos(2\theta) + \cos(4\theta) \right) + \frac{3a^4}{2r^2} \cos(4\theta) \right]
\]

\[
\sigma_y = -P \left[\frac{a^2}{r^2} \left(\frac{1}{2} \cos(2\theta) - \cos(4\theta) \right) + \frac{3a^4}{2r^2} \cos(4\theta) \right]
\]

\[
y = -P \left[\frac{a^2}{r^2} \left(\frac{1}{2} \sin(2\theta) + \sin(4\theta) \right) - \frac{3a^4}{2r^2} \sin(4\theta) \right]
\]

and

\[
x = \frac{p}{4G} \left[\frac{k-1}{2} \cos(2\theta) + \cos(2\theta) \right]
\]

\[
x = \frac{p}{4G} \left(\frac{a^2}{r^2} \left[1 + (1+k) \cos(2\theta) \right] + \frac{a^4}{r^2} \cos(2\theta) \right)
\]

where \(G\) is the shear modulus and \(k=(3-\nu)/(1+\nu)\) with \(\nu\) the Poisson’s ratio. Due to symmetry, only the upper right square quadrant of the plate is modeled [see Fig. 9]. The edge length of the square is 5a, with
a being the radius of the circular hole. Symmetry boundary conditions are imposed on the left and bottom edges and the tractions obtained from the analytical solution [Eq. 23] are applied to the top and right edges.

The problem is solved using the CDLS method, under a plane stress condition, with the following constants: \(P = 1 \), \(E = 1000 \), and \(\nu = 0.3 \). Three nodal configurations with 183, 318 and 633 nodes, respectively, are used. The nodal configurations are shown in Figure 10. The MLS with quadratic basis is used in the simulation. The horizontal displacement \(u_x \) along the bottom edge \((y = 0) \), and the stress component \(\sigma_x \) along the left edge \((x = 0) \) are shown in Figure 11 and Figure 12, respectively. Compared with the analytical solutions, good agreements are obtained for both the displacements and stresses.

Fig.13 shows convergence rate with three nodal configurations (n = 183, 318, and 633). The following L2 norm of error is used for representing the convergence rate of displacements and stress separately:

\[
\left\| e \right\|_2^2 = \sum_{i=1}^{N} e_i^2
\]

Where \(e_i \) is the difference between numerical...
and exact solution in node \(i \). A stable and monotonic convergence rate is observed for the problem.

This problem is also solved for the special case where the collocation points are placed on the position of main nodes. Distribution of nodes with 183 nodes and collocations is shown in Figure 14. For this case \(H^1 \) error norm [Eq. 22] is 1.11. By increasing number of collocations to 335 (see Figure 10-a), \(H^1 \) norm decreases to 0.79. For additional information about effect of collocation points refer to [26].

\[\text{Figure 11} \quad \text{The horizontal displacement along } y=0 \text{ for the three nodal configurations} \]

Finally, the CDLS method is compared with FPM. FPM results are taken from [4]. Nodal configurations for CDLS and FPM are shown in Figure 15 and 16, respectively. The exact stress component \(\sigma_x \) along the left edge (\(x = 0 \)) is compared with corresponding results from both CDLS and FPM in Figure 17. Results shows that present method possesses good accuracy in comparison with FPM method.

5. Conclusion

A truly meshless approach, collocation discrete least-squares (CDLS) method, is extended to solve elasticity problems. In the CDLS method, the problem domain is discretized by distributed field nodes. The field nodes are used to construct the trial functions. The moving least-squares interpolant is employed to construct
the trial functions. Some collocation points that are independent of the field nodes are used to form the total residuals of the problem. The least-squares technique is used to obtain the solution of the problem by minimizing the summation of the residuals for the collocation points. The final coefficient matrix is symmetric and then can be solved directly via efficient solvers. The boundary conditions are easily enforced by penalty method. The present CDLS method does not require any mesh so it is a truly meshless method. Numerical examples are studied in detail, which show that the present method is stable and possesses good accuracy, high convergence rate and high efficiency. It is also shown that CDLS method has good accuracy in comparison with FPM method. All these advantages of the CDLS emphasizes on its ability as a useful meshless method for the solution of elasticity problems.

References

Civil Engineering, 5(2): 134-143.

