
International Journal of Civil Engineering, Vol. 10, No. 3, September 2012

1. Introduction

In optimization of structures, the main aim is to minimize the

cost. For steel structures minimizing the weight is sufficient

since these structures are made of a single material and the

cost is proportional to structural weight. However in the case

of reinforced concrete structures because of the presence of

different materials, one can not simply minimize weight. In

fact, more parameters, such as the cost of concrete, steel, and

forming are involved, and each of these parameters influence

the dimensions of the structure. If the cost per unit volume of

the concrete is much higher than that of the steel, then in the

process of optimization those results corresponding to

minimum cross sections will be selected, and should this be

not, then sections with minimum steel will be chosen.

In the last two decades, many algorithms were developed

for optimal design of steel structures. Some of these

algorithms were also used for reinforced concrete structures.

For the members of reinforced concrete structures, Adamu et

al. [1] used the continuum-type optimality criterion for

minimizing the cost of reinforced concrete beams. Zielinski

et al. [2]  employed an internal penalty function algorithm to

optimize reinforced concrete short-tied columns. Fadaee and

Grierson [3] optimized the cost of 3D skeletal structures

using optimality criteria. Balling and Yao [4] optimized 3D

frames with a multi-level method by decomposing the

problem into a system optimization problem and a series of

individual member optimization problems. Rajeev and

Krishnamoorthy [5] applied a simple genetic algorithm

(SGA) to the cost optimization of 2D frames. Optimal design

of T-shaped reinforced concrete section under bending was

performed by Ferreira et al. [6]. GA optimization of RC

frames under bending was carried out by Camp et al. [7] and

Lee and Ahn [8]. GA were used by Govindaraj and Ramasmy

[9] for the optimal design of continuous beam. Cost

optimization of buildings with planar slabs was carried out by

Sahab et al. [10,11] using a hybrid genetic algorithm. Kwak

and Kim [12,13] used a direct search method and an

integrated genetic algorithm complemented with direct

search for optimal design of planar RC frames. Whilst for

concrete structures genetic algorithms were mostly

employed, this paper analyzes the feasibility of using the Big

Bang - Big Crunch (BB-BC) method to optimally design of

planar reinforced concrete frames. The BB-BC method,

introduced by Erol and Eksin [14], mimics the evolution of

the universe. In the field of structural optimization, Camp

[15] and Kaveh and Talatahari [16] utilized BB-BC for
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optimal design of trusses. In addition, Kaveh and Talatahari

[17] pursued optimal designs of Schwedler and ribbed domes

via a hybrid BBBC algorithm. Other applications of meta-

heuristic algorithms in RC structures can be found in Refs.

[18-19].

2. Components of a reinforced concrete frame and
construction of the database of frame members

2.1 Construction of database

In general a three dimensional reinforced concrete (RC)

frame consists of beams, columns, floor slabs, foundations,

walls, staircases. However, 2D frames to be optimized consist

of beams and columns.

According to ACI 318-08 code [20], reinforced concrete

members should be designed such that they have sufficient

strength for sustaining the bending and torsion moments, axial

forces and shear forces produced under the applied loads. In

order to simplify calculations, in the present study, only

bending moments are considered for the beams while bending

moments and axial forces are considered for the columns. The

effect of shear is ignored.

A reinforced concrete element is constructed of reinforced

steel and concrete, and the specifications given in the

preliminary chapters of the ACI 318-08 Code are sufficient for

their design. In this paper, this code is used for the design of

the frame members. Specifications for design of reinforced

beams and columns are provided in Chapters 8, 9 and 10 of the

above mentioned code.

Unlike steel frames where the sections of beams and columns

are pre-fabricated and also limited, in reinforced concrete

frames the number of sections to be considered and also

different patterns of reinforcements which can be used for

beams and columns is quite large. However, in practice usually

the sections are considered as rectangular ones with a depth to

width ratio between 1.5 to 2.5 for beams and 1 to 2 for

columns. The increment of the dimensions of the sections can

be considered with steps of 5cm. The sizes of reinforcing bars,

similar to Ref. [8], are considered as D22 for beams and D25

for the columns. The ACI 318-08 code [20] considers some

limitations on the sections. These limitations consist of the

minimum and maximum of steel area in the cross sections,

minimum amount of concrete cover equal to 1.5in for the

members, minimum diameter of the ties and minimum

distance between longitudinal reinforcement bars.

Considering the above mentioned rules, one can construct

many sections for beams and columns. Lee and Ahn [8] have

presented a method for generation of sections with different

depth and width, and also different patterns for the

reinforcement bars. Their approach to formation of beam and

column cross sections is also followed in this paper.

2.2. Beams 

Beams are defined as structural elements that transfer the

loads from floor slabs to the supports which are at the end of

the columns. Under these loads shear forces and bending

moments are produced in the beams. Considering the ACI 318-

08 code [20], the following constraints should be imposed on

the sections of the beams.

At least 4 reinforcement bars should be considered in the 4

corners of the cross section as shown in Fig. 1a. The minimum

distance between the longitudinal reinforcing bars is taken as

Sb=40mm. The layout of the bars is limited to at most two

layers. The reinforcing bars of the top layer should be

positioned on the reinforcing bars of the bottom layer and the

minimum distance between two layers should be 25mm as

shown in Fig. 1b. In a beam section, if additional reinforcing

bars are needed, all such bars will be positioned in a second

layer in a symmetric form with respect to the vertical axis of

the section, and placed directly above the reinforcing bars in

the lower layer. When the aforementioned symmetry does not

exist, then it is made symmetric by considering an additional

bar as illustrated in Fig. 1c.

In chapter 10 of ACI 318-08 code, the minimum and

maximum areas of flexural reinforcement are chosen as

follows:

(1a)

(1b)

where b, f΄c and fy are the width of the cross section, specified

compressive strength of the concrete, and specified yield

strength of the reinforcing bars, respectively. Here d is the

effective depth of the section which is measured as the

distance from extreme compression fiber to centroid of the
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(a)                              (b)                                                      (c)

Fig. 1 . Limitations on the layout of the reinforcement bars for beam members
(a) At least four bars in the corners  (b) Minimum distance between the longitudinal bars in the two layers  
(c) Allowable symmetric layout of the reinforcement bars with respect to the vertical axis of the section
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longitudinal tensile reinforcements of the section. The

coefficient β1 is a factor relating the depth of the equivalent

rectangular compressive stress block to the neutral axis depth:

it is taken from section 10.2.7.3 of the ACI 318-08 code. For

the formation of the reinforcement bars of the beams, D22 is

used.

Considering the above rules, 18 types of sections are

constructed as follows:

300×450, 300×500, 300×550, 300×600, 350×550, 350×600,

350×650, 350×700, 400×600, 400×650, 400×700, 400×750,

400×800, 450×700,450×750, 450×800, 450×850, 450×900 mm.

A total of 1043 sections with different layouts for the

reinforcing bars are generated for beams, the details of which

are provided in Table 1. Details of the formation of these

sections can be found in Ref. [8].

For the beams, the factored moment capacities at the middle,

and near the ends are calculated using φMn=φAs.fy.(d-(a/2))

and stored in the database. In this relation, φ is the strength

reduction factor (φ=0.9), As is the area of the tensile bars and

a is the depth of the equivalent rectangular compressive stress

block defined as a=As.fy/(0.85f΄cb).

In Table 1, the database corresponding to the beam sections

used for the examples of this paper are listed together with the

width, depth, area and moment of inertia, number of

reinforcing bars for positive and negative moments, the

corresponding factored bending moment capacities, and the

cost for the unit length of the beams. The calculation of the

cost for the unit length will be discussed further.

2.3. Beam columns   

Beam columns are vertical elements supporting the structural

floor systems. These elements are often subjected to

compressive axial forces and bending moments. Using the

rules from ACI- 318-08 code [20], the following constraints

should be imposed on the sections of the beam columns.

The free distance between the parallel longitudinal bars is

assumed to be sc=40mm, and the minimum number of

reinforcing bars is 4 which should be positioned at the four

corners of the cross section as shown in Fig. 2(a). The pattern

of the bars should be symmetric and in the two opposite sides

of the section as illustrated in Fig. 2(b). The minimum and

maximum areas of the longitudinal bars are limited to 1 to 8

percent of the total area of the cross section, respectively. In

the columns only D25 bars are used. In all test problems for

the columns a database consisting of 51 square cross sections

with the dimensions 300mm to 850mm at steps of 50mm is

used, as provided in Table 2. 

The strength of a column under the applied loads (bending

and axial force) is evaluated using the P-M interaction

diagram. Here it is used a simplified linear P-M interaction

diagram previously presented by Kwak and Kim [12], as

illustrated in Fig. 3. Each interaction diagram has 4 key points

consisting of the following:

The first point corresponds to the maximum compressive

axial load which can be sustained by the column with zero

eccentricity (point 0). The second point corresponds to the

balance of strain conditions in which the concrete in

compressive part reaches εcu=0.003 and the tensile steel equals

yield strain εy. This point can be considered as the border of

compressive and tensile failures (point 3). The third key point

corresponds to the maximum bending moment which can be

sustained by the column in the absence of the axial load (point

4). Finally, the fourth key point corresponds to the maximum
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Table 1. Database of beams considered in this study
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Fig. 2. Limitations of the reinforcement of the column sections
(a) At least 4 longitudinal bars at four corners of the section (b)
Symmetric pattern of the bars and the distance and cover of the

reinforcing bars

Table 2. Database of columns considered in this study
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tensile axial load which can be sustained by the column in the

absence of the bending moment (point 5).

According to ACI 318-08 code, maximum design axial

strength at zero eccentricity, i.e. P0, is defined as

(2a)

Where Ag is the gross area of the column cross section and Ast
is the total area of longitudinal reinforcement bars including

tensile and compressive bars. For the sections with closed

stirrup design axial strength at zero eccentricity, i.e. P1, is

defined as P1=0.8P0. The coordinates of point 2, i.e. (M2,P1),

is obtained as the crossing point of the line Pn=P1 and the line

which connects the two points 0 and 3. For point (M3,P3) the

following relationships can be used:

Ast = A΄s+As (2b)

f́ sb =0.85 f́ c  (b.ab-Á s  )+ Á s  . f́ s b -As.fy (2c)

(2d)

(2e)

eb =é b -x
- ,   Mnb = eb.pnb (2f)

Where b is the width of the cross section; h is the depth of the

cross section; A΄s is the area of the compressive bars; As is the

area of the tensile bars; f΄y is the yield strength of the

compressive bars; f΄sb is the stress value in the compressive bars

before yielding; d΄ is the distance of the center of compressive

bars from the furthest compression fiber of the section; x- is

the distance between plastic neutral axis and centroid of tensile

bars; ab is the depth of the equivalent rectangular stress block;

eb is the eccentricity of the axial load from plastic neutral axis;

e΄b is the eccentricity of the axial load from centroid of the

tensile bars; Pnb is the nominal axial strength and Mnb is the

nominal flexural strength of the section, in balanced strain

conditions. For symmetric reinforcement A΄s =As we have x-

=d-(h/2). With simple calculations one can find the design axial

strength and design flexural strength in balance strain

conditions as: p3 =φpnb and  M3 =φMnb , respectively.

In order to find the bending moment M4, with a try and error

method one can first determine the magnitude of a such that the

nominal axial strength of the cross section pn, approaches to 0.

(3a)

(3b)

Numerically the magnitude of a is far less than the depth of

the column, h. Once the approximate value of a is known, by

using the following relationship, the magnitude of the nominal

flexural strength of the column section, Mn, in the absence of

the axial force can be found as:

(4)

Therefore, it follows M4 =φMn. At this point the behavior of

the column is the same as a beam under the action of pure

bending. The axial strength of the column under pure tension

can be calculated from p5 =φAst fy
In the above relationship φ is considered according to the

appendix C of the ACI 318-08 code. After finding the key

points for the linear interaction diagram P-M of each column

section, the database of column sections is completed.

In Figure 3, P0, P1, P3, P5 are the design axial strengths and

M2, M3, M4 are the design flexural strengths of the column

cross section in different conditions of eccentricity. Also Mu
and Pu are the factored moment and factored axial force of the

section, respectively.

Table 2 shows the database of all the column sections used in

the examples of this paper, including dimensions, number of

reinforcing bars and the key points of the interaction diagram,

and also the cost of the unit length of the columns. The

procedure followed to compute cost will be later clarified in

the paper.

3. Frame analysis

For optimal design of a frame the fitness or the cost of each

frame should be computed. For this purpose the internal forces

including axial force, shear force and bending moments in the

frame are required. These quantities are determined via finite

element analysis. In RC frames, in order to account for the

effect of cracking, the moment of inertia and the area of the

cross section for each member is calculated using the

following relationship:

Ibeam=0.35Ig ,  Icolumn=0.7Ig ,  Abeam=Ag  ,  Acolumn=Ag (5)

as suggested in Section 10.10.4.1 of [20]. Here, Ag and Ig are

the gross area and the gross moment of inertia of the gross

section of the beam or column, respectively. The ACI 318-08

code provides the elastic modulus of the concrete as

Ec=4700Sf́ s in MPa. The analysis of frame consists of
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Fig. 3. Column strength rectilinear interaction diagram P-M with
transitional points
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controlling the slenderness of the columns, and in case a

section is recognized to be slender, then the magnified bending

will be considered for that column.

Slenderness

According to ACI 318-08 code [20], for compression

members not braced against sidesway, the slenderness effects

can be neglected, when klu/r<22 . In this relation k is the

effective length factor for compression members; lu is the

unsupported length of compression member; r is the radius of

gyration of the cross section of a compression member.

The effective length factor of a column denoted by k depends

on the ratio of the stiffness of the columns to the stiffness of

beams connected at the end of the compression member. This

ratio at the end of a compression member can be expressed as 

(6)

Where I is the moment of inertia considering the cracked

section, E is the modulus of elasticity and l is the length of the

beams and columns. Indices b and c respectively refer to

beams and columns connected to the ends of a column.

After calculating ψ for the ends of each compressive

member, the mean value of these values,  ψm, is obtained and

the coefficient of the effective length of the compression

member, k, is calculated using the following relationships:

(7a)                                              

(7b)

For a fixed support it holds ψ=0. The radius of gyration is

calculated as 

For a slender column, the magnified bending moment can be

calculated as:

M=Mns + δs.Ms (8)

where Mns is the bending moment generated by the gravity

load and Mns is due to lateral load and δs is the moment

magnification factor for frames not braced against sidesway.

After determining the magnified moment separately for each

end of a column, the biggest one is used to design the column.

The calculation of the magnification factor δs is performed as

indicated in Chapter 10 of ACI 318-08 code [20].

4. Statement of the optimization problem and
penalized objective function

4.1. Objective function

The aim of the optimal design of a structure is to minimize

the cost of the structure. For optimal design of a reinforced

concrete structure, the cost of the material and the cost of labor

should be included in the objective function. The optimization

problem of a RC frame can be stated as follows:

Minimize: F= Fb+Fc (9)

(10a)

Subject to:

For beams:                                                      

(11a)

For columns:   (Mu, Pu)O(φMn, φPn)                                  (11b)

Where,

F = Total cost of all members of the frame ($);

Fb, Fc = Cost of all beams and columns, respectively ($);

Cc, Cf , Cs = Unit cost of concrete, formwork (including the

labor cost) and steel, respectively;

b, h, L =  width, depth and length of the members (m),

respectively;

Ast = total area of the reinforcing bars for each section (m2);

γs = density of rebar (kg/m3);

M
+
u   , M

-
u     l , M

-
u    r   = Externally applied moment at mid-span, left

and right joints of beams, respectively;

M
+
n , M

-
n = Nominal flexural strength at mid-span and joints

of beams, respectively;

Mu, Pu = Externally applied moment and axial force of

columns, respectively;

Mn, Pn = Nominal flexural and axial strength of columns,

respectively;

Since for two test cases the optimization results

obtained with the BB-BC algorithm developed in this paper

were compared with the results of Ref. [8], the costs of the

concrete and steel and the cost of the formwork were set equal

to those indicated in [8]:

Cc=54 $/m3, Cs=0.55 $/kg, Cf=50.5 $/m2, γs=7850 kg/m3              (12)

As mentioned before, the cost of the unit length of the

column section, Fb and Fc are calculated and stored in the last

column of the corresponding database table. It should be

mentioned that in the paper by Lee and Ahn [8], for positive

and negative reinforcing bars of the beams, a length coefficient

is considered, which means that positive and negative bars are

cut in a definite length. However, in this paper in order to have

more realistic costs and since in BB-BC the population

production for a new generation is based on the cost per unit

length, in calculating the cost per unit length of the beams, the

reinforcing bars were not cut out but were assumed to span the

entire beam length. In the comparison section, the cost is also

calculated on this base for the results of Ref. [8] to make the

comparison more meaningful. Once final sections are chosen

for all the members, one can impose the suitable length

coefficients for the positive and negative reinforcing bars and

calculate the final cost.
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4.2. Penalized objective function

In order to assess the merit of a trial design and determine its

distance from the global optimum one should compute the

eventual constraint violation by means of a penalty function.

The penalty function consists of a series of geometric

constraints corresponding to the dimensions and shape of the

cross sections, and a series of constraint related to the

deflection and internal forces of the members of the structure.

Thus, penalty will be proportional to constraint violations and

the best design will have the minimum cost and no penalty.

Geometric constraints were taken into account in the definition

of the database of available beam and column profiles.

The constraints considered in this paper are the same as those

of Ref. [8]. For beams, three constraints are considered

corresponding to the positive bending moments at the middle,

and the negative bending moments at the two ends of the

member:

(13a)

(13b)

(13c)

A column section is suitable and safe enough when the

corresponding pair (Mu,Pu) under the applied loads does not

fall outside the interaction diagram. In order to express this

constraint in a mathematical form, the distance between the

point representing the pair and the origin in the plane of

interaction diagram is used (Fig. 3). Considering this figure if

the position of the pair is considered at B, and A is the crossing

point of the line connecting B to the origin O and the

interaction diagram, then one can easily calculate the distance

of the points A and B from O. The ratio of these distances can

be used as the constraint of the columns. In order to specify the

point A, the angle between OB and the horizontal axis should

be calculated as θ=tan-1(Pu/Mu)  and then considering the key

points of the interaction diagram it can be found out which line

of the interaction diagram will be crossed by the line OB. In

this way if Lm and Lu are taken as the lengths of OA and OB

respectively, then we have

(14)

Therefore the penalty function for the strength of the column

an be expressed as

(15)

For column sections we have another three constraints

corresponding to the dimension and the number of reinforcing

bars of the column sections which are in the same line (the co-

linear columns). This means that the dimensions of the top

column should not be larger than those of the bottom one, and

also the number of reinforcing bars in the top column should

not be greater than that of the bottom column. If T and B

represent the top column and bottom column, respectively,

then these constraints can be expressed as follow:

(16)

Where b, h and n are the width, depth and number of the

reinforcing bars of the column sections, respectively. The total

penalty of each design was determined by summing over the

different penalty terms for each element:

(17)

The constrained optimization problem was transformed into

an unconstrained optimization problem by collapsing the cost

function and the penalty term according to literature:

Minimize Fp=F.(1+G)ε (18)

Where Fp is the penalized objective function, F is the cost

function and ε is a parameter larger than 1 that depends on the

structure type. The value ε =2 set in this study provided

satisfactory results. After calculating the value of Fp for all the

candidates, the optimization process is continued to obtain the

optimal design using the following algorithm.

5. BB-BC algorithm

The BB–BC algorithm as developed by Erol and Eksin

(2006) [14] consists of two phases: a Big Bang phase, and a

Big Crunch phase. In the Big Bang phase, candidate solutions

are randomly distributed over the search space. Each candidate

design is a possible design for the structure. The quality of

each candidate design is evaluated by computing the penalty

function. The first phase of the BB-BC algorithm ends when

this evaluation is done for all designs. In the Big Crunch phase,

the centre of mass is defined for the population of candidate

designs. In order to find the position of this centre, the mass of

each candidate is considered to be proportional to the inverse

of the corresponding penalized objective function. Therefore,

the merit function is smaller for each candidate with small cost

and low penalty, and such a candidate absorbs the mass centre

towards itself. Therefore, the centre of mass is located near to

more qualified candidate designs. At this point the BC stage is

completed. In the new BB phase a new population around the

obtained centre of mass, produced in the previous BC stage, is

formed. BB and BC stages are sequentially repeated until the

optimal design is obtained. In each iteration of BB and BC, the

search space shrinks until reaching the convergence to the

optimum design. However, the initial population of candidate

designs randomly generated plays an important role. If the

initial population does not cover the entire search space or

most of the candidates lie inside some small region of the

search space, then the optimization process may converge to a

local optimum. Therefore, one should start optimization from

different initial populations in order to increase the probability

of finding the global optimum. The BB-BC code utilized in

this study is based on the classical formulation developed by

of Erol and Eksin [14]. The centre of mass is defined as:
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(19)

where Xcm is the position of the center of mass; Xi is the

position of individual i; Fpi is the penalized objective function

value of the individual i; N is the population size.

The new position of the new population in the next iteration

of Big Bang is obtained by a normal distribution around the

centre of mass Xcm in the following form:

Xi
new = Xcm +σ (20)

where Xi
new

is the position of the new individual i ; σ is the

standard deviation of a standard normal distribution. The

parameter σ is defined as:

(21)

where r is the random number from a standard normal

distribution; α is a parameter not greater than 1 which limits

the size of the search space around Xcm; xmax and xmin are the

upper and lower limits on the values of the design variables; s

is the number of explosions.

In order to improve the performance of BB-BC, Camp [15]

presented the following formula for producing the new

candidate: 

(22)

where Xbest is the best global solution of all the candidates

obtained up to this stage of the iteration of BB-BC. The

parameter β controls the effectiveness of the Xbest in selecting

the position of the new candidates. 

In optimization of RC frames one can select many types of

variables. These can be cross section dimensions, the diameter

of the bars, number and length of reinforcement bars, etc.

However, the design variables selected in this research are

consistent with those indicated in Ref. [8]. In order to simplify

optimization, some parameters are pre-selected and some cross

sections of known dimensions and reinforcing patterns are

considered and only the costs per unit length of such elements

are taken as design variables. This simplification allowed

optimization results to be compared with those of [8] in identical

conditions. There is another reason for limiting the number of

variables: as this number increases, the computational time also

increases and makes the optimization unpractical.

Here the variable X is considered as cost per unit length of

each element and if the members of a structure are put in

different groups, for each group we should define a centre of

mass. As it can be seen from Tables 1 and 2, the beam and

column sections are ordered according to the cost of the unit

length from smallest to the biggest. Thus for the group of

beams xmin=74.455$ and xmax=174.88$, and for the group of

columns we have xmin=73.937$ and xmax=261.58$. The

magnitudes of Xi
new

for different groups of beams and

columns can be obtained. For each group of beams or

columns, the member in the database of available structural

elements with the cost per unit length closest to the computed

one is selected as the new candidate design. The sorting of

available elements with respect to their cost per unit length,

has facilitated the updating of design.

Camp considered β =0.2 and α=1 [15]. However, β =0.3 and

α=0.7 were found to be more suitable for the optimization

problems considered in this study as they improved the

convergence speed significantly (around 15 percent). Table 3

shows the effect of BB-BC parameters on optimal design for

the three bay, six-story reinforced concrete frame.

The flowchart of the algorithm BB-BC is shown

schematically in Fig. 4.
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Table 3. Effect of BB-BC parameters on optimal design for three bay, six-story reinforced concrete frame
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Fig. 4. Flowchart of the optimization by BB-BC algorithm
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6. Test cases and results

In order to verify the efficiency of the BB-BC algorithm

described in this paper, three examples of plane RC frames

were considered. Since two of these frames were optimized

previously with GA by Lee and Ahn [8], results of GA and BB-

BC methods are compared.

Loading cases acting on frames consist of joint loads and

uniform distributed loads. Lateral equivalent static earthquake

loads (E) are applied as joint loads, and uniform gravity loads

are assumed for a dead load (D) and a live load (L). In Ref. [8],

five independent loading cases were considered as suggested

by ACI 318-99 code [21]:

U=1.4D+1.7L                                                                  (23a)

U=0.75(1.4D+1.7L ± 1.87E) (23b)

U=0.9D±1.43E                                                                 (23c)

However, the ACI 318-08 code [20] for strength design

indicates new loading cases which are different from those

specified above. In order to compare the results, the same

loading cases must be considered. However Appendix

specifications of the ACI 318-08 code [20] contemplates the

possibility of using the loading cases specified above provided

that the strength reduction factors (φ) used are taken from the

appendix specifications, where this requirements are

considered in constructing databases.

A uniform service dead load of D=16.5 kN/m, and a

uniform service live load of L=7.2 kN/m were assumed in

all test problems. The assumed specified compressive

strength of concrete and yield strength of reinforcement

bars in these examples were set as f΄c = 23.5 MPa 

and fy = 392 MPa, respectively. The BB-BC code was

implemented in Matlab. Structural analyses were 

performed via direct stiffness method. A classical

termination criterion counting at least 2,000 analyses

without any change in the current best record Xbest was used

for all test cases. All optimization runs were carried out on

a standard PC with a Pentium (R) Dual-Core CPU 2.60

GHz processor and 2.00 GB of RAM memory. Due to the

random nature of the BB-BC all the examples were

executed at least 30 times to make sure of the optimality of

the results.

6.1. Three bay, three-story reinforced concrete frame 

This test case was also solved with GA in [8]. Figure 5

shows that the structure includes 9 beams and 12 columns.

All elements are assumed to be designed in groups: one

group for all beams and two groups for columns. For this

frame, only the uniform gravity loads is applied. The results

of optimum design with BB-BC and GA are shown in Table

4. It should be reminded that in [8], the cost of beams was

calculated based on length factors of reinforced bars for

positive and negative moments, while in this research it 

was assumed that all reinforced bars were to be continuous

along the beams. In Table 4, the cost of the beam sections of

above-mentioned paper is recalculated based on this

assumption.

As is shown in Table 4, BB-BC chose beams with smaller

depth than GA, but the dimensions of exterior columns are

bigger than GA. It should be mentioned that in [8] the cover

thickness of concrete is assumed as tc=35 mm, which is less

than the value suggested by ACI 318-08 code. The present

BB-BC algorithm run with tc=35 mm, yield the cost of 10645

$, that is less than the cost of 10798 $ obtained by GA.

Nonetheless, the BB-BC method run satisfying all

requirements of ACI 318-08 code yield the cost equal to

10803 $ for this frame, which is only 5$ higher than the cost

obtained by GA. The optimization process was completed in

24 seconds. The GA used the population with 300 

individuals, while the present algorithm used 125 individuals.

GA and BB-BC converged to optimum design after 59 and 75

iterations, respectively. For this frame, the ratio of the 
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Table 4. Optimized designs for three bay, three-story reinforced concrete frame
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Fig. 5. Three-bay, three-story reinforced concrete frame
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sample space to the entire search space was

(125G75)/(1043G51G51)=3.5G10-3.

It should be mentioned that increasing the number of

candidates increases the speed of convergence but also the

CPU time required in the optimization process. Therefore a

compromise between these two conflicting issues should be

found.

The comparison between convergence curves for BB-BC and

GA is presented in Fig. 6 while Fig. 7 shows the random

spread of initial population in the design space for BB-BC

method. In the latter figure, the position of each individual is

marked with ‘*’ and the position of optimum solution i.e.,

10803 $ is marked with dot.

Table 5 shows the maximum values of demand capacity ratio

(DCR), i.e., the maximum of (Mu/fMn) for beams, and the

maximum of (Lu/Lm) for columns in all groups, under the

critical loading case. While strength capacity of beams and

exterior columns is optimally used, strength capacity of the

interior columns is suboptimal, as the section optimized by

BB-BC for this group of columns is the smallest one in the

column database.

6.2. Three bay, six-story reinforced concrete frame 

The three-bay, six-story RC frame, shown in Fig. 8, includes

18 beams and 24 columns. Beams and columns are grouped in

3 and 4 groups, respectively. Loading conditions include the

uniform dead and live loads applied on beams only, and a

lateral earthquake load applied as joint loads. BB-BC found

the optimum solution of 22182 $ after 118 iterations by

utilizing a population of 250 candidate designs. The

optimization process was completed in 235.333 seconds. In

this example, the order of sampling space relative to domain

space was (250G118)/[(1043)3G(51)4]=3.8G10-12 .

The optimized design and the convergence curve are shown

in Table 6 and Fig. 9 respectively.

Table 7 shows the maximum values of DCR, in beams and

columns for all groups, under the critical loading case. The

ratios in this table show the proper usage of the strength

capacity of all groups with the exception of columns group [1].

It was found that for this group of elements the design is driven

by the constraints (g5,g6,g7) on dimensions and number of

reinforced bars in the co-linear columns but not by strength

constraints. Therefore, since the section 350×350 with 8D25

was selected by BB-BC for columns group [3], columns of

group [1] were forced to have at least the same section as the

upper columns. As far as it concerns strength, the section

350×350 with 6D25 could withstand loads acting on the

columns group [1]. However, the number of reinforced bars of

this section is smaller than for the section of columns group [3]

and was not selected by BB-BC for columns group [1]. The

optimum section found by BB-BC for columns group [4] is the

smallest section in the column database, i.e. 300×300 with

4D25. Therefore, strength capacity is not optimal also for this

group of elements.
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Table 5. Maximum DCR for member groups in the three bay, three-
story RC frame
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6.3. Three bay, nine-story reinforced concrete frame 

This RC frame is the same optimization problem solved by

[8] with GA. Figure 10 shows that the structure includes 27

beams and 36 columns. The beams and columns are assumed

to be designed in 3 and 4 groups, respectively. Loading

conditions include uniform dead and live loads acting only on

the beams and lateral earthquake loads applied to joints.

The BB-BC algorithm run with a population of 250

individuals found the optimum cost of 35907 $. The

optimization process was completed in 128 iterations and

required 7.393 minutes of CPU time. The GA of Ref. [8] found

instead a higher cost, 37964 $, in more iterations (277), and

required 17 minutes of CPU time. Optimized designs are

compared in Table 8: the present algorithm designed a

structure 5.4 % cheaper than that optimized by GA. Figure 11

shows the convergence curve for this test case. For this frame,

the ratio of sampling space to domain space was

(250×128)/[(1043)3×(51)4]=4.17×10-12 .

The maximum values of DCR, in beams and columns for all

groups, under the critical loading case are shown in Table 9.

Strength capacity was properly assigned to all groups except

for columns group [1]. It was found that for this group of
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Table 6. Optimized designs for the three bay, six-story reinforced concrete frame
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Fig. 9. Convergence history of the BB-BC and GA for the three-bay,
three-story reinforced concrete frame

Fig. 10. Three-bay, nine-story reinforced concrete frame

Table 7. Maximum DCR for member groups in the three bay, six-
story RC frame
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elements the design is driven by the constraints g7 on the

number of reinforced bars in the co-linear columns but not by

strength constraints. The section 400×400 with 6D25 could

withstand loads acting on the columns group [1]. However,

because of constraints (g7) the number of reinforced bars for

this group section could not be smaller than its counterpart for

the upper columns. Therefore, BB-BC selected the 400×400

section with 8D25 for columns group [1].

7. Concluding remarks

In this paper, the Big Bang - Big Crunch algorithm was

proven able to find optimal design of 2D reinforced concrete

frames. BB-BC was applied for the first time to this kind of

discrete optimization problems. Numerical results demonstrate

the feasibility and efficiency of the proposed approach. While

in steel structures design variables correspond to the member

cross-sectional areas, in the case of reinforced concrete

structures optimization variables are the cost for the unit

length of the members.

Using some cross sections for beams and columns which

occur in practice the speed of convergence was quite good.

The ratios of sample space to domain space, as calculated in

section 6, were low for the three-story frame, and much lower

for the six-story and the nine-story frames. These ratios show

that although the search space was rather small, BB-BC could

find a good global optimal design. The slope of the

convergence curves in the initial iterations shows that if the

primary random spaces are selected properly (candidates are

properly distributed in the search space and not gathered

within some special region), then the BB-BC recognizes the

region where the global optimum lies, after few primary

searches, as then it continues to further search in this subspace.

Comparison of optimization results obtained with BB-BC

and GA shows the superiority of the BB-BC which leads to

better results than GA. Furthermore it can be noticed that BB-

BC uses a smaller population than GA. This leads to higher

convergence speed, therefore, BB-BC does not require a large

number of candidate designs. If this number is very low or

very high, then the performance of the algorithm decreases. In

order to find a suitable number of candidate designs, the

optimization program can be executed by taking different

number of candidates and find the limit. It is also

recommended to use different primary random search spaces

to find the most suitable one.

It should also be mentioned that working with BB-BC is

much easier than GA since programming is easier and also it

has not many internal parameters whose values can be found

by performing few preliminary optimization runs.  
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Table 8. Optimized designs for three bay, nine-story reinforced concrete frame
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Fig. 11. Convergence history for the three-bay, nine-story reinforced
concrete frame

Table 9. Maximum DCR for member groups in the three bay, nine-
story RC frame
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