Volume 14, Number 8 (Transaction A: Civil Engineering 2016) | IJCE 2016, 14(8): 595-608 | Back to browse issues page

XML Print

Abstract:   (1551 Views)

Steel plate shear walls have long been used as a lateral load resisting system. It is composed of beam and column frame elements, to which infill plates are connected. This paper investigates the progressive collapse-resisting capacity of 50-story building 3D model of the strip model of steel plate shear wall comparing with X-braced and moment frame system based on the removing structural elements from a middle and corner of the exterior frame, in the story above the ground. The collapse behavior is evaluated by different nonlinear static and dynamic analyses using conventional analysis software. In this study, vulnerability of structures is also assessed by sensitivity index (SI) regarding the sensitivity of structures to dynamic effect induced by progressive collapse. To identify vulnerable members, resulting actions of nonlinear static analysis, considering load factor to account for dynamic effect, at the failure mode of structure at the specific performance level are compared by the factor of redundancy related to overall strength of structure, with the linear static analysis of damaged model without considering dynamic effect,. Comparing analysis results indicated that in the steel plate shear wall system, the progressive collapse resisting potential is more than X-braced and moment frame. Sensitive index of highly sensitive elements to dynamic effect stated that in the structural models, beams are more vulnerable in moment frame than X-braced frame and SPSW structure, significantly, and vulnerability of columns in X-braced frame and SPSW system is more than moment frame.

Type of Study: Technical Note | Subject: Structure-Steel