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1. Introduction

Landslides are significant natural geologic

hazard around the world. Expansion of urban and

man-made structures into potentially hazardous

areas leads to extensive damage to infrastructure

and occasionally results in loss of life every year.

Since the early 1970s, many scientists have

attempted to assess landslide hazards and

produced susceptibility maps portraying their

spatial distribution by applying many different

GIS based methods. The results of published

papers show that landslide susceptibility and

hazard maps have become very effective tools for

planners and decision makers [1].

Landslide hazard (LH) defines the physical

attributes of a potentially damaging landslide in

terms of mechanism, volume and frequency [2]

and therefore landslide hazard assessment (LHA)

estimates the probability of a landslide

occurrence within a certain period of time in a

given area [3] [4]. Most attempts have been made

to establish the intensity and dimension of

landslides compared with temporal frequency of

slope failures [5]. Such kind of LHA is expressed

in the term of Landslide Susceptibility

Assessment (LSA). Hence, a hazard map that

aims at predicting where slope failures are most

likely to occur, is more accurately defined as a

landslide susceptibility map. The term

susceptibility defines the likelihood of

occurrence of a landslide if governing factors like

rainfalls, earthquakes, etc., are not considered

[6]. According to the Soriso Valvo (2002) [5]

landslide susceptibility assessment is a process

directed to establish the likelihood that future

landslides will occur in a given area on the basis

of suitable physical terrain factors (slope, land

use, litholgy, etc.) In LSA, spatial correlation

between the important terrain factors and past

landslide distribution is often considered [7]. An

up-to-date landslide inventory map that includes

existing information on the past mass movement

is then required to determine these correlations

[3]. The reliability and accuracy of the future

spatial probability of slope failure that is

portrayed in Landslide Susceptibility Map (LSM)

[8] must also be gathered. The accuracy mostly
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depends on the amount and quality of available

data, the working scale and the selection of the

appropriate methodology of analysis and

modeling [9] [10].

Different models and methods have been

proposed to produce LSM; however, the general

agreement on these methods is yet to come.

Despite of these disagreements, all the methods

can be classified into direct and indirect

techniques or, into qualitative and quantitative

approaches [11]. 

In a direct mapping approach the degree of

hazard is mapped directly in the field, or is

determined on the basis of a detailed

geomorphological map. Despite of some

advantages of direct method, it is, however, a

time-consuming method that depends on the

expertise of geomorphologists [12].

The indirect method shares the following steps

[13]: mapping of the landslides in the target

region, mapping of a set of geological –

geomorphological factors which are directly or

indirectly correlated with slope instability,

determinig the relative correlation with slope

instability, and classifying the land surface into

the regions of different landslide susceptibility

degree (hazard zoning).

Qualitative methods are subjective and

demonstrate the hazard zoning in descriptive

(qualitative) terms. Quantitative methods

produce numerical estimates (probabilities) of

the occurrence of landslide phenomena in any

hazard zone [14]. In general, a qualitative

approach is based on the subjective judgment of

an expert or a group of experts but the

quantitative approach is based on mathematically

objective structures [2].

Landslide susceptibility assessment was

challenged by several researchers in recent years.

The use of Analytic Hierarchy Process (AHP) by

Komac  [15]; Yalcin  [9] and Analytic Network

Process (ANP) [16] by Neaupane and

Piantanakulchai [2], weighted linear combination

(WLC) by Ayalew et al.  [17] and Fuzzy Logic

theory by Ercanoglu and Gokceoglu  [18] are all

different examples of qualitative or semi

quantitative approaches in LSA. Also widely use

of bivariate statistical models by Lin and Tung

[19]; Su¨zen and Doyuran  [13]; Thiery et al.

[20] and various multivariate statistical

techniques like discriminant analysis by Carrara

et al. [21] or linear and logistic regression by Dai

and Lee  [22]; Ayalew and Yamagishi [10],

Artificial Neural Network (ANN) by Yesilnacar

and Topal [23]; Lee et al.  [24]; Ermini et al. [25]

are all different examples of quantitative

techniques. These statistical and functional

methods facilitate understanding of the

relationships between landslides and preparatory

factors, and guarantee lower subjectivity levels

with respect to qualitative approaches and,

therefore, have been attempted more than the

others by academic and research institutions [24].

2. Experimental procedures

The study area is located in the south of

Mazandaran province northern Iran where most

landslides occurring in the country have been

reported from this chiefly mountainous and

forestry region. The area under investigation is

located from 52°31´ to 53°27´ east longitude and

from 35°52´ to 36°30´ north latitude with

expansion of about 3440 km2 and elevation

ranges from 45 to 3273 m (Figure.1). The

environmental setting, excessive rain, relatively

extensive drainage network, low resistance of the

soil and rocks against pressure and variation of

slope are recognized as the most effective

parameters of landslide and slope failure in this

region. The main units of lithology in this region

are consist of limestone, dolomite, shale,

Fig. 1. Study area and landslide inventory map
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siltstone, sandstone, marl, tuff, conglomerate,

anhydrite, salt and their different combination or

derivate. Also the main units of landuse of study

area are forest with variant range of coverage

from low to dense, garden, farming land, and

their different combination or derivate, and a

little urban and water regions. The major

landslides in the region are transitional or

rotational and seldom rockfall that will be

modeled together in this study.

In this study, the susceptibility mapping started

with the preparation of an inventory map of 151

landslides of the study area at the scale of

1:1,000,000. Seven causal factors are then

chosen, namely; slope, aspect, curvature, land

cover, lithology, distance to river and distance to

fault. The important factors that are considered in

the selection process where: having a certain

degree of correlation with landside, being fairly

represented all over the study area, having spatial

variation, measurability and non redundancy [9].

All preliminary thematic maps (i.e. landslides

inventory, and land cover from Jihad-e-

Keshavarzi Ministry Digital Elevation Model

(DEM) with accuracy of 1 meter, river, fault, and

lithology of study area were obtained from

National Geosciences Database of Iran (NGDIR)

in small scale (1:1,000,000).

LSM is generated through various approaches;

namely, Weight of Evidence (WOE), Artificial

Neural Network (ANN), Analytical Hierarchy

Process (AHP) and General Linear Regression

(GLR). Next subsections describe these concepts

and the steps to implement each method.

2.1. Weight of Evidence (WOE)

This method is based on Bayesian probability

theory and was developed for the identification

and exploration of mineral deposits [26]. In

comparison with other analyses, such as multiple

logistic regression analysis, discriminant

analysis, factor analysis, and cluster analysis, the

results of weights-of-evidence are easy to

interpret. Moreover, spatial patterns with

complex geometries can be modeled with the

same computational effort as patterns with simple

geometries. The effect of each spatial variable

can also be calculated independently of a

combined solution [26]. Prior and posterior

probabilities are the major concepts which are

used in this approach to determine the relative

importance of data [27]. The probability P is

usually estimated empirically with knowledge

about the occurrence of an event D in the past

under equal conditions, and is known as prior

probability P{D} where P{B} denotes the

evidence probability. When the evidences are

integrated into the calculation of the probability,

it is identified as conditional or posterior

probability P{D|B}. This posterior probability

P{D|B} expresses the probability that an event D
will occur under the presence of an evidence B.

Both probabilities (prior and posterior) are

integrated into the Bayes theorem as follows:

(1)

WOE has the ability of measuring the spatial

relation between the landslides and the evidences

named by W+ and W- and consequently their

contrast C as:

(2)

where W+ and W- describe the probably that a

landslide will occur in the case of presence or

absence of evidence B respectively [26]. If the

presence of evidence B in landslide occurrence is

more effective than what would be expected by

chance, W+ is positive and W- is negative.

Conversely, if the presence of evidence B in

landslide occurrence is less effective than what

would be expected by chance, W+ is negative and

W- is positive. The contrast C represents the extent

of these spatial associations. A larger C value

indicates a strong spatial association between the

occurrences and the evidence map [27].

In this study, each category of causal factors

was used as evidence and the contrast values (C)

was calculated from the WOE method. In order to

prevent undesirable effects of negative weights

and probability of zero in results 

while  , the quantity  was used to rate

the classes in the first (WOE-ANN) and second

(WOE-ANN-AHP) approaches.

2.2. Analytical Hierarchy Process (AHP)
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AHP is a well-known multi-attribute weighting

method for decision making. Pairwise comparisons

are used in this decision-making process to form a

reciprocal matrix by transforming qualitative data

to crisp ratios. The reciprocal matrix is then solved

by a weight finding method for determining the

criteria importance and alternative performance

[28]. Once the pairwise comparison matrix is

obtained; based on the problem elements, the aim

is to summarize preferences so that each element

can be assigned a relative importance [29]. The

Eigenvalue method is one way to access ultimate

weights of criteria. In order to measure the degree

of consistency of decision making, the consistency

index (CI) is estimated through:

(3)

where is the biggest eigen value of

comparison matrix and p is the number of criteria

or dimension of matrix. The consistency ratio

(CR) can be computed as:

(4)

where RI is the random index (the consistency

index of a randomly generated pairwise comparison

matrix). It can be shown that RI depends on the

number of elements being compared.

The consistency ratio (CR) is designed in such

a way that if CR<0.10 then the ratio indicates a

reasonable level of consistency in the pairwise

comparison; if, however, CR>=0.10, then the

values of the ratio are inconsistent [30].

In this study the AHP comparison matrix was

used to achieve causative factor maps’ weights

and verify the consistency of relative weights

resulting from a data-driven method (ANN) and

in a pairwise comparison of criteria. The AHP

method usually can estimate better results than

other simple knowledge-based weighting

methods especially in landslide problems [9].

2.3. Artificial Neural Network (ANN)

Artificial Neural Networks are computational

networks which attempt to simulate, the networks

of nerve cell (neurons) of the biological central

nervous system [31]. It has been found that

ANNs, specifically Multilayer Perceptron (MLP)

model, have several advantages for Landslide

Susceptibility mapping, such as the ability to

handle imprecise and fuzzy information, fault

and failure tolerance, high parallelism, non-

linearity, robustness, capability to generalize and

tolerance to noise data and thus have the

capability to analyze complex data patterns [32].

Ability of learning is one of the most important

characteristics of ANN [26]. It means that the

random initialization of the weights of network at

first would be adjusted according to the different

patterns of data. Compared with the statistical

methods, neural networks need less training data

for accurate analysis [33]. A MLP consists of

three layers namely; input, output and hidden

layers [34] as represented in Figure.2.

This network consists of a number of

interconnected nodes from all layers. Each node

is a simple processing element that responds to

the weighted inputs which is received from other

nodes. The receiving node sums the weighted

signals from all nodes to which it is connected in

the preceding layer [35]. The number of neurons

(nodes) in the input layer is equal to the number

of data sources and the number of neurons in the

output layer is constrained by the application and

is represented by the number of outputs. The

number of hidden layers and the number of

neurons in each layer depends on the architecture

of network and usually are determined by trial

and error [33]. The network weights are then

modified in the training process by a number of

learning algorithms based on back propagation

learning [26]. In order to solve Non-linear

classification problems and to adjust weights of

hidden layer in back propagation learning any

RI
CICR =

max 

1

max

−
−

=
p

pCI λ

Input 
layer 

Hidden layer 
(or layers)

Output 
layer 

Fig. 2. The structure of Multilayer Perceptron with one
hidden layer
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differentiable nonlinear function can be used as

an activation function, but a sigmoid function

such as equation 1 is generally used [26]:

(5)

where netpj is the weighted sum of pattern p in

node j. The error of pattern p in node j for

output layer and hidden layer are obtained

respectively from the following equations:

(6)

Where opj is the real output of pattern p in node

j, tpj is the target output of pattern p in node j, wjk
is the weight between node j and k in next layer

and operator is related to k units in layer after

node  j.

2.4. General Linear Regression (GLR)

Linear regression is a form of multivariate

statistical analysis in which observational data

are modeled by a function. The function has

usually assumed one response variable Y and m

predictor variables X1, X2, . . . , Xm and n
observations [29]. In this case study Y is the

presence or absence (or the area percentage) of

landslides in each sampling unit, the X’s are input

predictor variables (the area of categories in

causative factors) measured or observed for each

mapping unit, the ’s are coefficients estimated

from the data and represents the model error. In

matrix terms this becomes:

(7)

According to the principle of least squares, the

fitted values of that minimize are:

(8)

In this case the residuals are defined as the

difference between observed and fitted values

and so there are some criteria to evaluate the

correctness of fitted model that will be mentioned

as: Sum of squared errors related to regression

(SSreg) and Sum of squared errors related to

residuals (SSres). Then R2 factor would be

acquired as:

(9)

R2 is used to verify the efficiency of model (if

R2 approximately equals 1) and also interpreted

as the amount of variability in the observations

that can be explained by the predictors. This

model will act well for landslide assessment if the

problem have a near to linear structure.

Also, the sample variance and Mean Square of

the observations (MSreg) and residuals (MSres), by

using the regression equation, according to the

number of equations (n) and unknown parameters

(m) are respectively given by: 

(10)

(11)

The t-distribution and Fisher distribution tests

may be used for testing the outcomes [29]. 

3. Methodologies and Results

In order to assess the landslide susceptibility,

four approaches were practiced that are mainly

different in the process of weighting or rating.

The results of each approach in weighting phase

are values representing the relative importance of

factors and their categories respectively. These

approaches were applied and then compared.

3.1. First Approach (WOE-ANN)

The first approach uses the Weight Of

Evidence (WOE), for rating categories of each

causative factor map of instability, and an

Artificial Neural Network (ANN), for weighting

factor maps, as represented in Figure.3.

By overlaying landslide inventory map with each

causative factor, the statistical relationship can be

measured between categories and past landslides

based on landslide density in each category, and

assessed Contrast values (C) as the rating values.

The results of rating step are shown in Table 1.

In order to calculate relative weights between

the factor maps, a multilayer perceptron was
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established. The weights were acquired then by

training of the neural network with a training set

that consists of landslide points (sliding

conditions) and non-landslide points (stability

conditions) and their associated values in each

factor map as input values.

After using a test set and calculating RMSE for

different network structures, the network

structure associated with the minimum RMSE

was selected as the best network structure. This

Effective 

factors  
Categories C eC

 Effective 

factors  
categories C eC

Lithology Jd  0.5930 1.8094 Land Cover mix(agri_garden-lowforst)  0.2666 1.3056 

 Jk  0.7496 2.1162  mix(dryfarming_lowforest) -  0 

 Czl -  0  mix(agri_follow) -0.0714 0.9310 

 Jl -1.5707 0.2078 Dist. to river   0-500  m  0.3190 1.3758 

 Db.sh -  0   500-1000 m  0.0381 1.0389 

 Pr -  0  1000-1500 m -0.0284 0.9719 

 TRe -0.6149 0.5406  1500-2000 m  0.2781 1.3207 

 Cb -  0 >2000 m -0.5465 0.5789 

 Ktzl  1.1242 3.0778 Dist. to fault   0-1000 m  0.1146 1.1214 

 Ek -0.1882 0.8284  1000-2000 m -0.0440 0.9569 

 K1bvt -  0  2000-3000 m -0.3051 0.7370 

 Plc -0.1851 0.8309  3000-4000 m  0.1829 1.2007 

 Mm,s,l -  0 >4000 m  0.0262 1.0265 

 Qft2 -  0 Slope   0° - 5° -0.7038 0.4946 

 Mlgs  0.3380 1.4021   5° -15°  0.1455 1.1567 

Land Cover mix(lowforest_goodrange) -0.6741 0.5095  15° -25° -0.0010 0.9989 

 Modforest -0.5187 0.5952  25° -35° -0.0706 0.9317 

 Garden -  0  >35°  0.6136 1.8472 

 mix(modforest_goodrange) -1.1177 0.3270 Aspect North -0.5297 0.5887 

 Goodrange -0.8417 0.4309  North East  0.2640 1.3021 

 mix(goodrange_garden) -0.0471 0.9539  East  0.0121 1.0121 

 Lowforest -0.4621 0.6299  South East  0.0344 1.0350 

 mix(garden_lowforest)  0.2602 1.2972  South  0.3497 1.4187 

 Urban  1.7238 5.6060  South West  0.1315 1.1405 

 mix(lowforest_agri) -  0  West -0.5755 0.5623 

 mix(modrange_modforest_garden) -  0  North West  0.1377 1.1476 

 Denseforest  0.3773 1.4584 Curvature Very concave -0.0103 0.9896 

 mix(dryfarming_follow_modforest) -0.1511 0.8597  Concave  0.0591 1.0608 

 mix(agri_goodrange) -  0  Gently convex -0.0886 0.9151 

 Water -  0  Convex  0.1103 1.1166 

 mix(dryfarming_follow) -  0 Very convex -0.1454 0.8646 

 Agri -  0 

Table 1 The results of rating by WOE in the first approach
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structure was 7×4×2×3×1 (i.e. 7 neurons in input

layer, 4 neurons in the first hidden layer, 2

neurons in the second hidden layer, 3 neurons in

the third hidden layer and 1 neuron in output

layer). A MATLAB-based application program

was developed and their result is shown in Table

2. Then all factor maps were entered into the

optimum MLP structure for integrating and were

reclassified into 4 domains of Very High Risk,

High Risk, Low Risk and very Low Risk in order

to represent different degree of hazard at the

study area (Figure.4-a). 

3.2. Second Approach (WOE-ANN-AHP)

The rating phase in this approach is the same

as the first approach. But, in weighting phase,

each pair of factor maps is applied in a MLP for

1st approach 2nd approach 3rd approach 4th approach 

Rating factor maps' 
classes with WOE

Learning ANN of factor 
maps and integration of 

factor maps 

LSM 

Rating factor maps' 
classes with WOE

Learning ANNs of
pairwise factor maps

Finding total weights 
from pairwise comparison 

matrix

Integrating factor maps 
by index overlay

Making UCUs and 
extracting the values of

factor maps in them

Learning ANN of UCUs 
to find classes' weights

Integrating factor maps 
by index overlay

LSM 

Making UCUs and 
extracting the values of

factor maps in them

Using GLR to determine 
classes' weights

Integrating factor maps 
by index overlay

LSM 

LSM 

Fig. 3. The general process of each approach in this study

    a       b

c                d

Fig. 4. Landslide Susceptibility Map (LSM) from four methods: a-1st approach (using Weight-of-Evidence and Artificial
Neural Network), b-2nd approach (using Weight-of-Evidence, Artificial Neural Network and Analytical Hierarchy Process),
c-3rd approach (using Unique Condition Units in Artificial Neural Network), d-4th approach (using Unique Condition Units

in Generalized Linear Regression).
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training of the network with training data set and

controlling with testing data set. Ultimately, the

weight of each pair in landslide occurrence was

extracted (Figure.3). The number of factor maps

would be 21 since there exists 7 networks needed

for all cases of pairwise factor maps (with

elimination of extra or repeated cases). The

network output, like the previous approach,

shows the degree of landslide presence in the

study area. Table 3 represents the optimized

network of each pairwise factor maps and their

relative weights.

These weights are then formed a pairwise

comparison matrix of AHP. Final weights of

causative factor maps were calculated from

eigenvalue method and the Consistency Ratio are

represented in Table 4. The Consistency Ratio is

acceptable and therefore the results are

confirmable.

The factor maps were integrated in this

approach by using Index Overlay. The reclassified

map of integration step would be a landslide

susceptibility map as seen in Figure 4-b.

3.3. Third Approach (UCU-ANN)

This approach is used homogeneous domains

called Unique-condition units [25] as the cell

unit. The UCU are singled out by sequentially

overlying all the layers, whose number, size and

Table 2 Optimized network structure in the first approach

Number of neuron in each layer RMSE of training set

Input layer 1st hidden layer 2nd hidden layer 3rd hidden layer Output layer

7 4 2 3 1 0.4079

Table 3 Optimized network structure of each pairwise comparison of factor maps and their relative weights in the second
approach

Comparison factors Number of neuron in each layer weights 

1st factor 2nd factor Input 

Layer 

 1st Hidden 

layer 

 2nd Hidden 

layer 

 3rd Hidden 

layer 

 Output 

layer 

Slope Aspect  2  5  7  1  1  0.624

Slope Curvature  2  5  7  8  1  0.994

Slope Landcover  2  8  7  8  1  0.912

Slope Lithology  2  3  -  -  1  1.004

Slope Dist. to river  2  4  8  1  1  0.998

Slope Dist. to fault  2  8  3  7  1  0.985

Aspect Curvature  2  8  3  2  1  0.977

Aspect Landcover  2  6  8  8  1  0.990

Aspect Lithology  2  6  -  -  1  0.153

Aspect Dist. to river  2  7  -  -  1  0.992

Aspect Dist. to fault  2  7  7  6  1  0.971

Curvature Landcover  2  4  -  -  1  0.950

Curvature Lithology  2  5  1  5  1  1.027

Curvature Dist. to river  2  2  4  1  1  1.016

Curvature Dist. to fault  2  4  6  7  1  4.496

Landcover Lithology  2  1  1  -  1  1.359

Landcover Dist. to river  2  8  8  7  1  0.990

Landcover Dist. to fault  2  6  -  -  1  0.997

Lithology Dist. to river  2  3  6  3  1  0.966

Lithology Dist. to fault  2  6  4  2  1  1.036

Dist. to river Dist. to fault  2  3  3  7  1  0.995

D
ow

nl
oa

de
d 

fr
om

 ij
ce

.iu
st

.a
c.

ir 
at

 8
:0

7 
IR

S
T

 o
n 

S
un

da
y 

O
ct

ob
er

 2
2n

d 
20

17

http://ijce.iust.ac.ir/article-1-289-en.html


184 International Journal of Civil Engineerng. Vol. 7, No. 3, September 2009

nature depend on the criteria used in classifying

the input factors [13]. In this approach rating and

weighting was done simultaneously for all

categories of all causative factor maps in one

neural network (Figure 3); therefore, there are 63

neurons (number of categories) in input layer of

multilayer perceptron. It seems that when

statistical and functional methods are used, all the

categories in all thematic layers would be

comparable.

In order to reach this objective a UCU layer

was established over the study area. This layer

divides the study area into about 33000

homogeneous domains. Next step was devoted to

determine the presence or absence of each

category in each unit which assigned values 1 or

0. These values form inputs of a MLP with output

values of 1 or 0 associated to the case of landslide

or non landslide in each unit. Table 5 shows the

structure of optimized network that is 63×12×1.

The final weights are extracted from multiplying

matrices of 63×12 and 12×1 dimensions (Table

6). After the combining factor maps by Index

Overlay and reclassification of the output, the

LSM was obtained as represented in Figure 4-c.

3.4. Fourth Approach (UCU-GLR)

In this approach, like the third approach,

Unique-condition units (UCUs) were used as the

cell unit and reminder was related to determine

presence or absence of each class and landslide

occurrence in these units as done in the previous

approach (Figure 3). The presence or absence of

landslide is a dependent variable and categories

of parameters are independent variables which

form the matrices of GLR. The coefficients of

best fitted linear model would be known as the

categories’ weights consequently. The results of

regression analysis and general testing of model

are represented in Table 7; the selected predictors

and their associated coefficients are represented

in Table 8.

As seen 59 predictors from all 63 primary

parameters have been selected with the

Confidence Interval more than 95 percent. This

model was then applied to integrate all classes of

the effective parameters (Figure 3) however the

linear dependency in this case is not completely

significant according to the R2 testing result.

Figure 4-d shows the LSM concluded from this

approach after applying predictors’ weights,

overlying factor maps and then reclassifying the

output map based on the degree of susceptibility.

4. Conclusion and Discussion

This paper tried to generate Landslide

Susceptibility Map (LSM) using various

approaches. These approaches include statistical

methods that consist bivariate statistical models,

like WOE, and multivariate statistical models,

like GLR, Intelligent method with emphasis on

Multilayer Perceptron (MLP) as a common

ANNs and also Pairwise Comparison Matrix

(PCM) of AHP as a decision making tool in a data

driven manner. The paper classified all the

methods in four categories; namely; WOE-ANN,

Factors Normalized weights Factors Normalized weights 

Slope 1.212 Lithology 2.042

Aspect 1.147 Dist. to river 1.295

Curvature 1.789 Dist. to fault 1.107

Landcover 1.408

max 7.7715 CR 0.0974

Table 4 Final weights of factor maps resulted from an AHP pairwise comparison matrix with an acceptable Consistency
Ratio in the second approach

Value PropertiesValue Properties

32870Number of input patterns 63Neurons in input layer 

0.946RMSE of training set 12Neurons in hidden layer 

1.013RMSE of testing set 1 Neurons in output layer 

Table 5 Optimized network structure in the third approach
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factors Classes factors WeightClasses  factors

 0.2254 mix(agri_garden-lowforest) Land Cover 0.1521 Jd Lithology

-0.2597 mix(dryfarming_follow_lowforest) 1.3520 Jk 

 0.0729 mix(agri_follow) 0.0577 Czl 

-0.4185   0-500  mDistance to river 1.0103 Jl 

-0.2537   500-1000 m 0.7769 Db.sh 

 0.7209 1000-1500 m 1.5422 Pr

 0.2016 1500-2000 m 0.7218 TRe

-0.0884 >2000 m 0.0290 Cb 

 1.1854   0-1000 mDistance to fault -0.8631 Ktzl

-0.6967 1000-2000 m 0.4531 Ek

 0.7809 2000-3000 m 0.9246 K1bvt

-0.4821 3000-4000 m-0.0045 Plc 

-0.3157 >4000 m-0.7007 Mm,s,l

 0.4426   0° - 5° Slope -0.1792 Qft2 

 0.1523   5° -15° -0.6582 Mlgs

-0.6453 15° -25°-0.6343 mix(lowforest_goodrange)Land Cover

 0.0045 25° -35°-0.4369 modforest 

-0.5316  >35°-0.4091 garden 

-0.1696 North Aspect -0.2237 mix(modforest_goodrange)

 0.8314 North East-0.8735 goodrange

-0.6595 East-0.3737 mix(goodrange_garden)

 0.5389 South East -0.4025 lowforest 

 0.7729 South-0.2480 mix(garden_lowforest) 

 0.1023 South West -0.6226 urban 

 0.4682 West 0.0704 mix(lowforest_agri) 

 0.4018 North West 0.4326 mix(modrange_modforest_garden)

-3.0984 Very concaveCurvature  0.2084 denseforest

 0.2168 Concave 0.0449 mix(dryfarming_follow_modforest)

-0.5196 Gently convex -0.5959 mix(agri_goodrange)

-0.9365 Convex 1.7066 water

-0.6757 Very convex -0.6031 mix(dryfarming_follow)

-0.3032 agri 

Table 6 Weights of categories in the third approach

Model Summary

Number of observation (n) R R2 Std. Error 

33237 .129 0.017 0.066 

Analysis Of Variance (ANOVA) 

Sum of Squares (SS) df Mean Square (MS) P (F<F59,33177,0.05) 

Regression 2.441 59 0.041 9.54

Residual 143.908 33177 0.004 

Total 146.35 33236

Table 7 The properties of Generalized Linear Regression model in the fourth approach
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WOE-ANN-AHP, UCU-ANN, and UCU-GLR.

Moreover, this research focused on the

combination of techniques and the strength of

ANN with respect to other regression models.

Using the methods, it is shown that the

meaningful intervals; which were computed by

WOE method, facilitate the process of learning in

ANN. This issue had been missed in previous

studies. The paper also showed how to exercise a

quantitative AHP rather than a common

qualitative one as it is done in most studies.

According to the type of data used, small scale

maps in this study, the application of UCUs faced

some troubles due to the exceeding volume of

input patterns. Therefore, the cell units were

more efficient than UCUs. This is another

contribution of the paper. As discussed, all of

these methods are quantitative without taking any

expert’s opinion into account and in all

approaches the most important issue is devoted

on investigation of correlation and dependency

between causative factors or their classes and

previous slope failures and then passing among

rating and weighting phase. All the LSM of these

Predictors and constant value B
Std. 

Err
t

P(|t| 

<tn,0.025) 
Predictors and constant value B

Std. 

Err
t

P(|t| 

<tn,0.025) 

(Constant) -0.007 0.003 -2.708 0.007 mix(agri_goodrange)  0.000 0.003  0.178 0.859 

aspect E  0.005 0.001  4.704 0.000 water  0.002 0.006  0.265 0.791 

aspect N  0.007 0.001  6.546 0.000 mix(dryfarming_follow)  0.000 0.008 -0.089 0.929 

aspect NE  0.005 0.001  5.031 0.000 agri -0.001 0.01 -0.141 0.888 

aspect NW  0.007 0.001  6.402 0.000 mix(agri_garden-lowforest)  0.005 0.003  1.635 0.102 

aspect S  0.006 0.001  5.437 0.000 mix(dryfarming_follow_lowforst)  0.003 0.012  0.224 0.823 

aspect SE  0.006 0.001  6.006 0.000 mix(agri_follow)  0.004 0.003  1.545 0.122 

aspect SW  0.006 0.001  5.314 0.000 Lithology Jd -0.005 0.003 -1.857 0.063 

aspect W  0.004 0.001  3.3 0.001 Lithology Jk -0.008 0.003 -3.109 0.002 

curve very concave -0.003 0.001 -2.291 0.022 Lithology Czl  0.002 0.007  0.225 0.822 

curve gently convex  0.002 0.001  2.134 0.033 Lithology Jl -0.005 0.001 -3.901 0.000 

curve convex  0.000 0.001 -0.363 0.717 Lithology Db.sh  0.000 0.006  0.065 0.949 

curve very convex -0.003 0.001 -2.745 0.006 Lithology Pr  0.000 0.006 -0.106 0.916 

fault_0_1000  0.001 0.001  1.141 0.254 Lithology Tre -0.004 0.002 -2.091 0.036 

fault_2000_3000  0.000 0.001 -0.752 0.452 Lithology Cb  0.004 0.011  0.387 0.699 

fault_3000_4000 -0.001 0.001 -0.858 0.391 Lithology Ktzl -0.004 0.003 -1.397 0.163 

fault_more_than_4000  0.001 0.001  0.941 0.347 Lithology Ek -0.005 0.001 -3.628 0.000 

mix(lowforest_goodrange)  0.000 0.003  0.066 0.948 Lithology K1bvt -0.005 0.004 -1.37 0.171 

modforest  0.002 0.002  0.904 0.366 Lithology Plc -0.007 0.002 -4.493 0.000 

garden  0.002 0.004  0.531 0.595 Lithology Mm,s,l -0.01 0.003 -3.257 0.001 

mix(modforest_goodrange)  0.002 0.003  0.705 0.481 Lithology Qft2 -0.006 0.003 -1.95 0.051 

goodrange  0.004 0.003  1.44 0.150 river_0_500  0.003 0.001  2.139 0.032 

mix(goodrange_garden)  0.002 0.002  0.828 0.408 river_500_1000  0.002 0.001  1.974 0.048 

lowforest  0.003 0.002  1.214 0.225 river_1000_1500  0.001 0.001  0.639 0.523 

mix(garden_lowforest)  0.004 0.003  1.392 0.164 river_1500_2000  0.001 0.001  1.137 0.256 

urban  0.011 0.004  2.511 0.012 river_more_then_2000  0.001 0.001  0.626 0.531 

mix(lowforest_agri)  0.000 0.004 -0.087 0.931 slope_0_5 -0.009 0.001 -6.815 0.000 

mix(godrange_modforest_garden)  0.000 0.01 -0.057 0.955 slope_5_15  0.001 0.001  0.678 0.498 

denseforest  0.011 0.002  5.905 0.000 slope_25_35 -0.002 0.001 -1.586 0.113 

mix(dryfarming_follow_modforst)  0.006 0.002  2.743 0.006 slope_more_than_35 -0.003 0.002 -1.576 0.115 

Table 8 Selected coefficients of Generalized Linear Regression model and their related tests in the fourth approach
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4 approaches were consequently obtained from

an equal interval classification that maps the

results into four categories with different degree

of susceptibility or risk such as: Very Low, Low,

High and Very High (Figure 4). A quantitative

validation of how ANNs performs in the

landslide susceptibility mapping is made by

comparing the areas predicted as High and Very

High risk with the landslide inventory map.

Comparison of these approaches based on this

axiom (Figure 5) show that the 1st approach

(WOE-ANN), by including 88 percent of

landslide occurrence in High and Very High

susceptibility classes, has been the best landslide

estimator in this study, although all the accuracies

in different approaches are in a reasonable range

between 80 and 88 percent. The verification

results showed a satisfactory agreement between

the susceptibility map and landslide data.

Numerous methods are proposed to compare and

validate the results; some of them consider areas

of hazard groups. In this paper, the overall

accuracy has also been estimated by considering

the area of each hazard zone and the percentage

of its landslides frequency. Therefore, a higher

accuracy can be reached when the ratio of

landslides in instable zone (high and very high

risk) to the relative area of the zone increases.

Inversely, the lower ratio of landslides in stable

zone (low and very low risk) to relative area of

this zone indicates higher overall accuracy. Based

on this technique, the values of overall accuracy

for the susceptibility map of 1st to 4th approaches

were computed as 2.01, 1.94, 0.54, and 1.03

respectively. The magnitudes of the numbers

indicate their accuracy. These values convinced

us to choose WOE-ANN approach as the most

accurate one. The use of pairwise training

network of effective factors and extraction of

total weights from the AHP comparison matrix in

WOE-ANN-AHP approach was a new

experiment. But the experiment did not increase

the accuracy, since the complexity is not

considered when all the layers taken in a network

simultaneously. It should be pointed out that the

GLR did not suit this study. The reason may be

attributed to the nonlinearity of the problem. In

addition it appears that the use of UCUs in the

UCU-ANN and UCU-GLR approach did not

have an effective role in increasing the accuracy.

Therefore, it can be concluded that ANN is more

flexible method but need more information and is

more time consuming than statistical methods.
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