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Introduction

Ant algorithms as metaheuristic algorithms

were first proposed by Dorigo (1992) and

Dorigo et al. (1996) as a multi-agent

approach to different combinatorial

optimization problems like the traveling

salesman and the quadratic assignment

problem. Later Dorigo and Di Caro (1999)

introduced a general ant colony optimization

(ACO) algorithm, namely ant colony

metaheuristic, which enabled the algorithm

to be applied to other engineering problems

provided that the problem can be properly

formulated. Recently, Dorigo et al. (2000)

reported the successful application of ACO

algorithms to a number of benchmark

combinatorial optimization problems.

Montgomery and Randall (2002a, 2002b)

introduced several alternative pheromone

applications in different problems. The

application of ACO algorithms to water

resources problems, however, is of quite

recent origin. Abbaspour et al. (2001)
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employed ACO algorithms to estimate

hydraulic parameters of unsaturated soils.

Maier et al. (2003) used ACO algorithms to

find a near global optimal solution to a water

distribution system, indicating that ACO

algorithms may form an attractive alternative

to genetic algorithms for optimal design of

water distribution systems. Zecchin et al.

(2003) compared the performance of the

original ant system (Dorigo et al. 1996) with

that of a min-max ant system, a modified

version of the ant system proposed by Stützle

and Hoos (1997a, 1997b), for optimization of

water distribution networks. Simpson et al.

(2001) discussed the selection of parameters

employed in ant algorithms for optimizing

pipe network systems. Jalali et al. (2004a)

employed ACO algorithms to solve the

problem of optimal reservoir operation. Also,

Jalali et al. (2004b) introduced an improved

version of the ACO algorithm in single

reservoir operation optimization. They

included pheromone promotion, explorer

ants, and a local search technique in a

standard ACO algorithm.

Application of ant algorithms to continuous

optimization problems requires the

transformation of a continuous search space

to a discrete one by discretization of the

continuous decision variable. Thus, the

allowable continuous range of decision

variables is discretized into a discrete set of

allowable values and a search is then

conducted over the resulting discrete search

space for the optimum solution (Abbaspour

et al. 2001). The ant algorithm has been

shown to outperform other general purpose

heuristic search algorithms including GAs

for small-scale problems (Dorigo and

Gambardella 1997). Performance of the

method, however, deteriorates for problems

of growing dimensions (Dorigo et al. 1996).

For problems with a small search space, the

algorithm is more likely to locate the optimal

solution before stagnation occurs. For large-

scale problems, however, the method may

encounter pre-mature convergence to a sub-

optimal solution.

Optimum operation of multi-reservoir

systems has received much attention during

the last three decades (Becker and Yeh 1974;

Mariño and Loaiciga 1985; Oliveira and

Loucks 1997). Most of the works in this area

have been dominated by dynamic

programming (DP), due to the serial features

of the multi-reservoir operation problem. The

DP method, which is theoretically capable of

locating the global optimal solution, suffers

from the so-called curse of dimensionality

and therefore, faces some serious limitations

in large-scale real world multi-reservoir

problems. Labadie (2004) presented a state-

of-the-art review of the optimal operation of

multi-reservoir systems with mathematical

and heuristic optimization algorithms. He

discussed some applications of genetic

algorithms, artificial neural networks, and

fuzzy-based approach to the multi-reservoir

optimization problem; however, ACO

algorithms were not included in the review.

Several DP-based methods such as

incremental DP (IDP), discrete differential

DP (DDDP), and IDP with successive

approximation (IDPSA), have been

developed to overcome the curse of

dimensionality syndrome. In a recent paper,

Mousavi and Karamouz (2003) introduced a

computational improvement scheme by

diagnosing infeasible combinations. Another

approach applied to multi-reservoir systems

employed an aggregation/decomposition

(A/D) technique in which some kind of

heuristic is used to build a suitable

approximation model of the original DP

model (Ponnambalam and Adams 1996). 

Many algorithms have been developed to
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tackle combinatorial optimization (CO)

problems. These algorithms may be

classified as either complete or approximate

algorithms. In approximate methods one

sacrifices the guarantee of finding optimal

solutions for the sake of getting good

solutions in a significantly reduced amount

of time.

In the last 20 years, a new kind of

approximate algorithm has been developed

which basically tries to combine basic

heuristic methods in higher level framework

aiming to efficiently and effectively explore a

search space. These methods are nowadays

commonly called metaheuristics (Blum and

Roli 2003). This class of algorithms includes,

but is not restricted to, Ant Colony

Optimization (ACO), Evolutionary

Computation (EC) including Genetic

Algorithm (GA), Iterated Local Search (ILS),

Simulated Annealing (SA), and Tabu Search

(TS) (Blum and Roli 2003).

There have been several applications of GAs

to multi-reservoir operation problems (Esat

and Hall 1994; Fahmy et al. 1994; Oliveira

and Loucks 1997). Esat and Hall (1994)

clearly demonstrated the advantages of GAs

over standard dynamic programming

techniques in terms of computational

requirements. Recently, Wardlaw and Sharif

(1999) applied GAs to four-reservoir system

operation, concluding that algorithm with

real value coding performs significantly

faster than the one employs binary coding.

They extended the formulation to a more

complex ten-reservoir problem. Being at its

early stages of development, Marriage Bees

Optimization (MBO) metaheuristic

algorithm was applied to a single reservoir

operation problem with promising results

(Bozorg Haddad and Afshar 2004).

In this paper, an adaptive refinement scheme

is incorporated into the original ACO

algorithm to address the optimum operation

of multi-reservoir systems. The proposed

procedure employs Pheromone Re-Initiation

(PRI) and Partial Path Replacement (PPR)

offers an alternative method which might

hopefully provide a remedy for the

dimensionality problem inherent in DP. The

model is successfully applied to a semi-

benchmark multi-reservoir operation

problem and the results for a single and

multi-reservoir system are presented and

compared with those of DDDP and well

developed GA.

Ant Colony Optimization (ACO)

Algorithms: General Aspects

An interesting and very important behavior

of ant colonies is their foraging behavior, and

in particular, their ability to find the shortest

route between their nest and a food source,

realizing that they are almost blind. The path

taken by individual ants from the nest to the

food source is essentially random (Dorigo et

al. 1996). However, when they are traveling,

ants deposit a substance called pheromone,

forming a pheromone trail as an indirect

means of communication. As more ants

choose a path to follow, the pheromone on

the path builds up, making it more attractive

for other ants to follow.

In the ACO algorithm, artificial ants are

permitted to release pheromone while

developing a solution or after a solution has

been fully developed, or both. As stated, the

amount of pheromone deposited is made

proportional to the goodness of the solution

an artificial ant develops. Rapid drift of all

ants toward the same part of the search space

is avoided by employing the stochastic

component of the choice decision policy and

the numerous mechanisms such as

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ce
.iu

st
.a

c.
ir

 o
n 

20
25

-0
7-

16
 ]

 

                             3 / 18

https://ijce.iust.ac.ir/article-1-331-en.html


287International Journal of Civil Engineerng. Vol. 5, No. 4, December 2007

pheromone evaporation, explorer ants, and

local search.

For the successful application of ACO

algorithms to combinatorial optimization

problems, one must project the problem on a

graph. Consider a graph G= (D,L,C), in

which D={di}  is the set of decision points at

which some decisions are to be made,

L= {lij} is the set of options j =1…NC, at

each decision point i=1…NT, and C={cij} is

the set of costs associated with option

L={lij}. A feasible path on the graph is called

a solution (f)k and the path with minimum

cost is called the optimum solution (f*)k. 

The transition rule used in the original ant

system is defined as follows (Dorigo et al.

1996):

(1)

where Pij(k,t) is the probability that ant k
selects option lij for decision point i at

iteration t; τij(t) is the concentration of

pheromone on arc (i,j) at iteration t; ηij = 1/cij
is the heuristic value representing the cost of

choosing option j at decision point i; Nk(i) is

the feasible neighborhood of ant k when

located at decision point i; and α and β are

two parameters that control the relative

importance of the pheromone trail and

heuristic value. The heuristic value ηij is

analogous to providing the ants with sight

and is sometimes called visibility. This value,

in static problems, is calculated once at the

start of the algorithm and is not changed

during the computation.

Let q be a random variable uniformly

distributed over [0,1], and q0XX[0,1] be a

tunable parameter. The next node j that ant k

chooses to go is (Dorigo and Gambardella

1997): 

(2)

where J is a value of a random variable

selected according to the probability

distribution of  Pij(k,t) (Eq. 1). Equations (1)

and (2) provide a probabilistic decision

policy to be used by the ants to direct their

search towards the optimal regions of the

search space. The level of stochasticity in the

policy and the strength of the updates in the

pheromone trail determine the balance

between the exploration of new points in the

state-space and the exploitation of

accumulated knowledge (Dorigo and

Gambardella 1997). To simulate pheromone

evaporation, the pheromone evaporation

coefficient (ρ) is defined which enables

greater exploration of the search space and

minimizes the chance of premature

convergence to sub-optimal solutions upon

completion of a tour by all ants in the colony.

The global trail updating is done as follows:

(3)

where τij(t+1) is the amount of pheromone

trail on option j of the ith decision point at

iteration t+1; 0OOρOO1 is the coefficient

representing the pheromone evaporation and

∆τij is the change in pheromone

concentration associated with arc (i,j) at

iteration t. The amount of pheromone  τij
associated with arc (i,j) is intended to

represent the learned desirability of choosing

option  j when at decision point i.

Various methods have been suggested for

calculating the pheromone changes. The

method used here was originally suggested

by Dorigo and Gambardella (1997) in which
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only the ant which produced the globally best

(gb) solution from the beginning of the trail

is allowed to contribute to pheromone

change: 

(4)

where           is value of the objective function

for ant k*gb, which is the ant with the best

performance within the past total iterations.

Pheromone Re-initiation and Partial Path

Replacement Algorithm

Realizing the possibility of premature

convergence to a local optimum, or

stagnation point, in original ACO algorithms,

considerable research has been conducted to

minimize this possibility. Even though Jalali

et al. (2004b) employed a combination of

explorer ants, local search, and the

pheromone promotion techniques to

minimize the possibility of the premature

convergence syndrome, their results for 10

runs with different seeds revealed relatively

high standard deviation, which may be

considered as an indication of diversity of the

results. To further reduce the possibility of

premature convergence, an adaptive

refinement procedure on pheromone

concentration named “pheromone re-

initiation” is proposed. In this algorithm,

when the possibility of stagnation is

increased (i.e., for a pre-defined number of

iterations no improvement is achieved)

pheromone concentrations in all paths are re-

initialized by setting them equal to the initial

value of τ0. After pheromone re-initiation,

the search continues as normal. Pheromone

re-initiation assigns the same desirability for

all paths to be followed by ants. Therefore, a

new search space is generated which may

help jumping out of the stagnation point,

hence improving the final results.

To further improve the best result and reduce

the overall diversity of the final results for

different runs, a “partial path replacement”

(PPR) mechanism is also proposed and

included in the algorithm. The PPR

employed in the present algorithm is based

on random displacement of some

components of pairs of solutions in each

iteration. To reduce the computational time,

in each iteration, a number of ants are chosen

and parts of their solutions are randomly

displaced with those of the global best from

the beginning of the trail (Fig. 1). A simple

flow diagram of the proposed ACO

algorithm with PRI and PPR mechanisms is

depicted in Fig. 2. To test the effect of the

adaptive pheromone re-initiation procedure

along with PPR, two examples are

considered. The first example is a single

reservoir and the second one is a benchmark

four-reservoir problem which has been

studied by different researchers since 1968. 

Model Application

a) Ackley Function

To test the performance of the proposed

mechanisms, the well known continuous,

multimodal, nonlinear Ackley function was

selected as the first case example. General

form of the function has been defined as

(Gen and Cheng, 1997):

(5)
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1 2 3 j NT-2 NT-1 NTm

Partial path to be replaced

Selected ant
(a trial solution)

Global best ant
(original ant)

New generated ant
(after PPR mechanism)

1 2 3 j NT-2 NT-1 NTm

1 2 3 j NT-2 NT-1 NTm

Pheromone initiation and Heuristic
value computation for each decision 

at each decision point

Pheromone
re-initiation ?

End condition ?

End

Building the string of decisions
(i.e., release values)

Partial path replacement mechanism
(some new ant generation)

Fitness value determination 
(for all strings of solutions)

Selecting the best solution 
(best fitness value)

Pheromone re-initiation 
for each decision at
each decision point

Yes

Yes

No

No

Updating pheromone of
each decision at each

decision point

It
er

at
io

n

Fig. 1 Schematic of  Partial Path Replacement (PPR) Mechanism

Fig. 2 Proposed ACO Algorithm with Partial Path Replacement and Pheromone Re-Initiation Mechanisms
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points, hill climbing based explicit

optimization methods may trap in one of the

local optimum points. On the other hand,

search based methods of optimization, such

as proposed approach, may explore wider

search space leading to better solutions. It is

quite clear that the global optimal of the

Ackley function has an objective function of

zero with all variables being equal to zero,

too.

Ackley function with different dimensions,

ranging from 5 to 30, was optimized using

standard ACO with and without the proposed

mechanisms. Feasible range of decision

variable was uniformly discretized into 11

classes. Statistical measures for 15 different

runs with 1000 iterations and 100 ants are

presented in Table 1. As is clear, the proposed

mechanisms have significantly improved the

quality of the final solution. Specifically, the

fully developed algorithm has been

converged to the global optimum for all 15

trial runs and all function ranging from 5 to

30 in dimensions. Graphical presentation of

the effect of different proposed mechanisms

in solution convergence is presented in Fig.3.

Inclusion of the proposed mechanisms has

significantly improved the rate of

convergence as well as improving the quality

of final solution.

b) Optimal Operating Policy for a Single

Reservoir

To illustrate the performance of the proposed

and tested algorithm, a real world single

reservoir problem was selected. Dez

reservoir is located in southern province of

Khoozestan in Iran. Detail information and

the data used in this study are available from

*   Standard deviation 

** Coefficient of Variation 

Algorithm Dimension Mean The Best The Worst S.D.* C.V.**

5 5.04 0.00 13.31 6.52 1.29

10 15.63 10.78 18.55 2.08 0.13

15 17.90 17.10 18.96 0.64 0.04

20 18.02 16.30 18.53 0.66 0.04

25 18.49 17.74 18.96 0.38 0.02

30 18.65 18.10 19.13 0.37 0.02

5 0.00 0.00 0.00 0.00 0.00

10 0.00 0.00 0.00 0.00 0.00

15 0.00 0.00 0.00 0.00 0.00

20 0.00 0.00 0.00 0.00 0.00

25 6.27 0.00 12.00 5.44 0.87

30 9.45 0.00 12.12 3.46 0.37

5 0.00 0.00 0.00 0.00 0.00

10 0.00 0.00 0.00 0.00 0.00

15 0.00 0.00 0.00 0.00 0.00

20 0.00 0.00 0.00 0.00 0.00

25 0.00 0.00 0.00 0.00 0.00

30 0.00 0.00 0.00 0.00 0.00

A
C

O
-P

R
I-

P
P

R
S

ta
n

d
ar

d
 A

C
O

A
C

O
-P

R
I

Table 1 Statistical Measures of Ackley Function Resulting from 15 Different Runs of Standard and Proposed ACO. 
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the authors and may be found elsewhere

(Jalali 2005). To develop an optimal

operating rule, the following general form

was considered:

(6)

y=1...NY, m=1...12

where R(y,m), S(y,m), and I(y,m) define the

release, storage volume, and inflow to the

reservoir during year ‘y’ and month ‘m’,

respectively. To normalize the inflow,

release, and storage, values of maximum

storage (Smax), maximum inflow (Imax), and

maximum release (Rmax) were used. Values

of operating parameters, a(m), b(m), and

c(m) as decision variables may now be

bounded between zero and one.

To apply ACO algorithms to a specific

problem, several steps must be taken.

Problem representation as a graph, assigning

a heuristic information to each path, defining

a fitness function, and selection of an ACO

algorithm are the most important steps

(Cordon et al. 2002). 

The objective function is to minimize the

total square deviation (TSD) from the

periodic target demand and expressed as:

(7)

subject to:

S(y,m+1)=S(y,m)+Y(y,m)-R(y,m)
-LOSS(y,m) (8a)

R(y,m)/Rmax= a(m)+b(m).S(y,m)/Smax
+ c(m).I(y,m)/Imax                              (8b)

SminOO S(y,m) OOSmax (8c)

where D(m) is the demand at month m, Dmax
is the maximum periodic demand, Si is the

reservoir storage volume at time period i, and

LOSS(y,m) is the loss (e.g., evaporation) at

year y and month m.

The problem so formulated was solved

defining 36 decision variables which were

uniformly discretized into 11 classes

with β =0 and α =1.

The proposed complete algorithm, which

now benefits from pheromone re-initiation,

partial path replacement, and pheromone

updating as defined by Jalali et al. (2004b),

was applied to the above single reservoir

problem  with 60 periods (5 years). 

Fig. 3 Effect of Different Improving Mechanisms on the Rate of Convergence to Optimal Solution (Averaged Over 15
Runs for 30 Dimensional Ackley Function)

/),().()(/),( maxmax += SmySmbmaRmyR

/),().( max+ ImyImc

),( myR
Min [ ]{ }

2

1

12

1
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To select the best values for ρ and q0, a

sensitivity analysis with 100 ants and 1000

iterations were conducted. Results of the

analysis are presented in Table 2 and 3.

Reduced values of q0 increase the effect of

exploration, causing higher coefficient of

variation and solution diversities for 10 test

runs. To examine the performance of the

algorithm to develop an optimal operating

policy for an extended period of 480 months,

values of 0.75 and 0.9 for ρ and q0 were

selected, respectively. To examine the effect

of number (or percentage) of ants

contributing in PPR mechanism, values of

objective function and execution time for 0,

25, 50, 75, and 100 percent were tested.

Results are presented in Fig. 4, in which

execution time increases more or less linearly

with the number of ants selected in PPR

mechanism. Even though the value of

objective function improves as the number

(or percentage) of ants in PPR mechanism,

yet, the improvement is not significant when

it exceeds from 50 percent. Therefore, the

long term operating policy problem for 480

periods was solved using ρ =0.75, q0=0.9 and

50 percent of population being permitted to

contribute in PPR mechanism. Results of the

study are presented in Table 4.

Rate of convergence to a near optimal

solution for the best run and averaged over

10 test runs are presented in Figs. 5 and 6 for

60 and 480 periods, respectively. To test the

0.10 0.25 0.50 0.75 0.90
Mean 1.082 1.104 1.078 1.066 1.091
The Best 1.033 1.013 1.011 1.014 1.027
The Worst 1.151 1.296 1.162 1.134 1.230
S.D. 0.046 0.085 0.051 0.046 0.067
C.V. 0.043 0.077 0.047 0.043 0.062

Parameter
ρ

0.00 0.25 0.50 0.75 0.90
Mean 1.362 1.356 1.230 1.174 1.066
The Best 1.123 1.128 1.040 1.072 1.014
The Worst 1.858 1.795 1.513 1.419 1.134
S.D. 0.241 0.242 0.142 0.109 0.046
C.V. 0.177 0.179 0.115 0.093 0.043

Parameter
q 0

60 480

Mean 1.036 56.394

The Best 0.998 53.441

The Worst 1.144 61.649

S.D. 0.046 2.535

C.V. 0.044 0.045

Parameter
No. of Periods

Table 2 Effect of Pheromone Evaporation Rate (ρ) on the Statistical Measures of the Solutions.

Table 3 Effect of Exploitation Probability (q0) on the Statistical Measures of the Solutions.

Table 4 Statistical Measures of 10 Test Runs for Optimum Operating Policy Model.
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performance of two different policies

developed with 60 and 480 periods, two 480

periods simulation model were run using

operating parameters so developed. Values of

52.2 and 53.4 were resulted from simulation

model for TSD with the operating parameters

resulted from 60 and 480 period,

respectively.

Fig. 4 Variation of Objective Value (O.V.) and Execution Time for Different Percent of Ants Contributing in PPR
Mechanism (Averaged over 10 Different Runs).

Fig. 5  Evolution of the Objective Function Value of the Optimum Operating Policy Problem Resulting from Proposed ACO
Algorithm (60 Periods)

Fig. 6 Evolution of the Objective Function Value of the Optimum Operating Policy Problem Resulting from Proposed ACO
Algorithm (480 Periods)
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Four-Reservoir Problem

The four-reservoir problem was first

formulated and solved by Larson (1968), and

more recently by Esat and Hall (1994) and

Wardlaw and Sharif (1999). This problem

offered the opportunity to test the

performance of ACOAs against a known

global optimum and to perform sensitivity

analysis. The system consists of four

reservoirs, as shown in Fig. 7. The supplies

from the system are used for hydropower

generation and for irrigation. Hydropower

generation is possible from each reservoir,

and all discharges pass through the turbines.

The outflow from reservoir four may be

diverted for irrigation. Hydropower and

irrigation benefits are quantified by linear

functions of discharge. The objective is to

maximize benefits from the system over 12

two-hour operating periods. There are

inflows to the first and second reservoirs

only, and these are 2 and 3 units, respectively,

in all time periods. The initial storage in all

reservoirs is 5 units. The fundamental

constraints on reservoir storage are:

(9a)

(9b)

and on releases from the reservoirs through

the turbines are:

(10a)

(10b)

(10c)

The above constraints apply at all time steps.

The continuity constraints for each reservoir

over each operating period i are:

Si+1 = Si + Ii + M.Ri (11)

where Si is the vector of reservoir storages at

time i in NR reservoirs; Ii is the vector of

reservoir inflows in time period i to NR
reservoirs; Ri is the vector of reservoir

releases in time period i from NR reservoirs;

and M is a NR × NR matrix of indices of

reservoir connections:

Fig. 7  Schematic of Four-Reservoir Problem 
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In addition to the above general constraints,

there are target final storages for all

reservoirs. There are five units for reservoirs

one to three, and seven units for reservoir

four. The objective function to be maximized

can be written as:

(12)

The benefit function bi(n) was tabulated by

Larson (1968) and Heidari et al. (1971).

The original solution presented by Larson

(1968) has been used for evaluation of the

ACO approach discussed below. For the final

target storages has been used a penalty

function (Heidari et al. 1971). Taking the

target ending storage in reservoir n to be f(n),
the penalty function is expressed as

for                            n=1…NR (13)

and

for                          n=1…NR (14)

The objective function is thus modified to

(15)

The above semi-benchmark four-reservoir

problem was solved by Wardlaw and Sharif

(1999), employing a genetic algorithm. For

the best combination of cross-over and

mutation probabilities along with the best-

fitted coding for the problem, the effect of

different seeds was examined employing 750

generations and 100 population size. In 5 out

of 10 runs, a global optimum of 401.3 units

was reported. Results of the other runs were

as close as 99.8 percent of the global

solution.

To solve a multi-reservoir problem with the

proposed ACO algorithm, two minor

modifications to the formulation used for the

single reservoir model are needed. First, the

period in each iteration must be extended to

account for all reservoirs in the system. In

other words, for a multireservoir system with

NR reservoirs, and the total operation period

of NT, the dimensions of the time-dependent

variables (i.e., release and storage) must be

defined with NR GG NT , resulting in a string

with NR GG NT cells or elements. The second

modification must include the defined

interrelation and/or interaction between the

reservoirs in the system. In a typical multi-

reservoir problem this interrelation may be

well defined by the continuity equation

between the reservoirs and the tributaries in

the system (Eq. 11).

As the complexity of the system increases,

definition of an appropriate heuristic function

becomes more and more difficult. In fact, by

defining an inappropriate heuristic function

one may mislead the ants by providing them

with wrong sight or vision. This was tested in

the four-reservoir problem which is

considered next. Realizing the objective

function, one may define the heuristic

function for the problem under consideration

as follows:

ηij= (BF)i.rj i=1,…,NR GGNT,   j=1,…,NC (16)

in which BFi is the benefit function for cell or

element i in a trial solution string. As an

example, referring to Heidari et al. (1971),

BFi for i=1…12 and BFi for i=13…24

associate with bk(1) and bk(2) (k=1,…,12) for

reservoir numbers 1 and 2. The heuristic
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values must be determined prior to the start

of iterations for all paths and periods; hence

it is not possible to include penalty terms in

the heuristic value’s determination. The

average obtained for 10 different runs with

the proposed ACO algorithm for α = 1 and

β = 1, employing the heuristic functions

defined by Eq. (16), is presented in Table 2.

Specifically, the best and the average for 10

runs with 200 ants and 1,000 iterations were

found to be 398.1 and 396.9, respectively. It

is worth mentioning that the global optimum

for the problem has been reported as 401.3,

which is 0.8 percent better than the best result

obtained here.

Realizing the constraints on the maximum

releases, interaction of the reservoirs’

releases with the overall system

performances, as well as the problems with

the inclusion of the penalty terms in the

heuristic function, it may be desirable to

decrease the rate of contribution of the

heuristic value on the transition rule, hence

decreasing the weight of exploration in the

final results. In fact, this idea was tested by

assigning β = 0 in 10 different runs with the

same 200 ants and 1,000 iterations. The

average result is presented in Fig. 8. The best

and the average results were determined to be

401.3 and 400.6, respectively (Table 2). In

fact, in 2 out of 10 runs, the global optimum

of 401.3 was obtained. Average values of the

objective function for 10 runs, along with the

standard deviation of the results are

presented in Table 2. The best and worst

results are also given in the same table.

Clearly, the average value of the objective

function for 10 different runs (i.e., 400.6) is

99.8 percent of the global optimum (i.e.,

401.3, presented by Larson 1968). The rate of

the convergence of the results (average for 10

runs) is depicted in Fig. 8. It is interesting to

note that with this algorithm an alternative

global optimal solution to the solution of

Larson (1968) has been obtained. To

appreciate the differences, releases proposed

by Larson (1968) and those of the present

model are presented in Fig. 9. It can be noted

that all scheduled releases are the same,

except those of periods 10 and 11 from

reservoir number 2. Regardless of these

differences in release schedule, the same

value of 401.3 for the objective function is

obtained.

Concluding Remarks

Realizing the possibility of pre-mature

convergence to a local optimum, or

stagnation point, in original ACO algorithms,

considerable research has been conducted to

minimize this possibility. In this paper to

Fig. 8 Evolution of the Objective Function Value of the Four-Reservoir Problem Resulting from Proposed ACO Algorithm
for Different Heuristic Value Amplification Options (Averaged Over 10 Different Runs)
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reduce the chance of premature convergence,

an adaptive refinement procedure on

pheromone concentration called pheromone

re-initiation, along with a partial path

replacement mechanism proved to be

efficient. These mechanisms improve the

performance of the standard ACO algorithm

significantly. The improvement includes the

final result, as well as initial and final rates of

convergence. In the benchmark Ackley

function minimization problem, after 410

iterations, PRI mechanism improved the final

solution by 97 percent and the combination

of PRI and PPR mechanisms reduced final

result to global optimum. As the complexity

of the system increases, a definition of an

appropriate heuristic function becomes more

and more difficult; this may lead the ants to a

less desirable direction by providing them

with wrong sight or vision. As an example, in

the optimal operation of a multi-reservoir

problem, a minimum weight assignment to

the exploration item in the transition rule

may end up with better results. Pheromone

re-initiation assigns the same desirability for

all paths to be followed by ants. Therefore, a

new search space is generated which helps

jumping out of the stagnation point.

Integrating pheromone re-initiation and

partial path replacement was shown to be

quite effective in developing a near-optimal

solution in the multi-reservoir operation

problem. Application of the proposed

algorithm to a benchmark mathematical

function as well as a benchmark four-

reservoir problem provided very promising

results. The algorithm also proved to be very

efficient in developing optimal operating

policy for long periods. In four-reservoir

problem, even though all the solutions could

have been converged to a possible large flat

plateau of the response surface, yet

convergence of 2 out of 10 solutions to the

global optimum may be considered as an

indication of convergence to more or less the

best option. A very low standard deviation

obtained for different runs could be

considered as an indication of low diversity

in the result. Results of the model compare

well with global optimal and well-developed

GA solutions.

Original ACO algorithms have been

developed for discrete optimization, hence

being quite suitable for discrete search

spaces. Their application to continuous

search space problems, such as reservoir

operation may introduce discretization error.

Improving the performance of ACOAs in a

continuous search space is an ongoing

research employing multi-colony approach.
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Notation

The following symbols are used in this

paper:

BFi = benefit function for cell or element i
in a trial solution string.

C = set of costs associated with the options

{cij}.

D = set of decision points {di}. 

D(m) = demand at month m.
Dmax = maximum periodic demand. 

G = Graph (D,L,C).

= value of the objective function for

the ant with the best performance within the

past total iterations.

Ii = inflow vector at time period i.
Imax = maximum inflow.

I(y,m) = inflow to reservoir at year y and

month m.

L = set of options {lij}.

LOSS(y,m) = loss (e.g., evaporation) at year

y and month m.

NC = number of release intervals(or classes)

NR = number of reservoirs

NT = number of time periods.

NY = number of years.

Ri = release vector at time period i.
Rmax = maximum release.

R(y,m) = release at year y and month m.

Si = reservoir storage volume vector at time

period i.
Smax = maximum storage allowed.

Smin = minimum storage allowed.

S(y,m) = reservoir storage volume at year y
and month m.

TSD = total square deviation from target

demand.
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α,β = parameters that control the relative

importance of the pheromone trail versus a

heuristic value.

ηij = heuristic value  representing the cost of

choosing option j at decision point i.
ρ = pheromone evaporation coefficient.

τ0 = initial value of pheromone.

τij(t) = concentration of pheromone on arc

(i,j) at iteration t.

bi(n) = benefit coefficients of reservoir n at

time period i
k*gb = ant with the best performance within

the past total iterations.

Pij(k,t) = probability that ant k selects option

lij for decision point i at iteration t.
q = random variable uniformly distributed

over [0, 1].

q0 = tunable parameter XX [0, 1].
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