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Abstract: A dynamic programming fuzzy rule-based (DPFRB) model for optimal operation of
reservoirs system is presented in this paper. A deterministic Dynamic Programming (DP) model is
used to develop the optimal set of inflows, storage volumes, and reservoir releases. These optimal
values are then used as inputs to a Fuzzy Rule-Based (FRB) model to derive the general operating
policies. Subsequently, the operating policies are evaluated in a simulation model while optimizing
the parameters of the FRB model. The algorithm then gets back to the FRB model to establish the
new set of operating rules using the optimized parameters. This iterative approach improves the
value of the performance function of the simulation model and continues until the satisfaction of
predetermined stopping criteria. The DPFRB performance is tested and compared to a model which
uses the multiple regression based operating rules. Results show that the DPFRB performs well in
terms of satisfying the system target performances.
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1. Introduction

Implicit stochastic methods (ISMs) are

commonly used for optimizing reservoir

systems operation. However, one important

difficulty in ISMs is to combine the large set

of results obtained from an implicit

stochastic method to derive general operating

policies. Implicit stochastic programming

has been widely used to derive the general

operating policies for reservoir systems.

Young (1967) proposed the use of linear

regression procedure to find the operational

rules from the results of a deterministic

optimization method. Bhaskar and Whitlach

(1980) used a multiple linear regression to

derive the operating rules as a function of

inflows to reservoir and storage volumes.

Karamouz and Houck (1982) extended this

approach in a model called DPR, in which

dynamic programming releases are

progressively constrained to become close to

the operating rule values.

Along with regression or using simple

statistics and diagrams and tables to infer the

operating policies (Lund & Ferreira, 1996),

other methods including the Artificial Neural

Networks (ANN) (Raman & Chandramouli,

1996; Chandramouli and Raman, 2001;

Cancelliere et al., 2002), and fuzzy rule-

based (FRB) technique (Russel and

Campbell, 1996; Shrestha et al., 1996;

Panigrahi and Mujumumdar, 2000; Dubrovin

et al., 2002) and the combination of FRB and

ANN (Ponnambalam et al., 2001;

Ponnambalam, et al., 2003) have been used.

Raman and Chandramouli (1996) showed in

a case study that ANN-based policies have

better performance compared to multiple

regression-based policies. There are other

models dealing with the use of operational

rules in multi-reservoir control models such

as Johnson et al. (1991), Koutsoyiannis and

Economou (2003), Lund and Guzman

(1999), Oliveira. and Loucks (1997), and

Philbrick and Kitanidis (1999). In the

DPFRB model proposed in this paper, the

optimal values obtained from a deterministic



DP model are used in an FRB model to

derive the operating policies. These fuzzy

rules are then tested in a simulation model for

evaluation of their performance. Also, an

iterative method is proposed to find the best

values of the FRB parameters, based on the

results of the simulation model. The DPFRB

and DPR models are applied to Dez and

Karoon reservoir system and the results are

compared. This paper is organized as

follows: In Section 2, the deterministic DP

model used in the first step of DPFRB and

DPR models is described. Section 3 outlines

the principles of the FRB method. The

complete description of proposed DPFRB

model is presented in Section 4. Analysis of

the results after applying the above models to

the case study is discussed in Section 5.

Finally, we conclude in section 6 by

summarizing the findings and providing

suggestions for improvement.

2. Dynamic Programming Based Modeling

Dynamic programming (DP) is a widely used

numerical tool for optimization of reservoirs

operation. In this method, an N multi stage

mathematical model, which has a separable

objective function, is divided to N sub-

problems and the value of objective function

is evaluated at each stage, recursively. We

use a deterministic DP model for

optimization of a multiple site reservoir

system. The recursive function and

constraints of such a system may be

mathematically presented as follows:

ft+1(St+1)= min [Loss(Rt,Dt)+ft(St)]     t=1,...,T
[1]

Subject to: typical constraints of a reservoir

operation model including flow (mass

balance) equations, lower and upper bounds

of the state (storage volumes) and decision

(release volumes) variables and so on  ft(St)
is the total minimum losses of operation from

stage 1 to stage t when the state of storage

volumes of reservoirs at the beginning of

season t is St , T is the time horizon, St is the

vector of storage volumes of a system of n
reservoirs at the beginning of season t , Rt is

the vector of release volumes from

corresponding reservoirs during season t , Dt
is the amount of the water demand in season

t , and  Loss(Rt,Dt) is the immediate loss of

operation during the season t .

The above mathematical model is solved by

discretizing the reservoir storage levels after

which optimal sequence of inflows, storage

volumes, and releases are obtained for t=1 to

t=T. 

3. Fuzzy Rule-Based (FRB) Modeling

The FRB modeling could be regarded as a

substitute for representing the operational

policies. In this method, the human reasoning

is easily incorporated in the decision making

process and therefore human operators are

better able to apply the results of the model.

They should also be able to incorporate their

experimental findings through membership

functions, the basic concept of fuzzy set

theory. The FRB method is a mathematical

model in which the rule-based system is

defined by fuzzy rules. A fuzzy rule is an “if-

then” proposition where “if” is associated

with the premise variables and “then” is

associated with the fuzzy or crisp

consequences such as:

If St is  A1i and It is A2i then Rt is Bi
where, It , St , and Rt are inflow to reservoir,

storage volume, and release from reservoir,

respectively and  Aki is the  kth linguistic

explanatory variable and  Bi is the

consequences of rule “ i ”. A linguistic

variable is a variable represented by a label

such as small, medium, or large. Each value
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of a linguistic variable is represented by a

fuzzy set. Therefore, Aki is a fuzzy set, which

is defined through its membership function.

These fuzzy rules are the linguistic

representation of an inference engine of a

Fuzzy Inference System (FIS) and are

determined by well-trained experts or

through a learning mechanism using

available input-output data. We have used the

optimal solutions derived from the DP as

input-output data to train the fuzzy rules. In

our FIS, the inflow and storage are taken as

the fuzzy premises while the releases from

reservoirs are considered as the crisp

consequent variables. This is a simple form

of the well-known Sugeno-type

(Sugeno,1985) FIS. To establish a FIS, the

lower and upper limits of each premise

variable are determined from the training

data set. Then, the range between upper and

lower limits of each premise variable is

divided into a set of overlapped classes in

which each class is a fuzzy number. Here we

used Triangular Fuzzy Numbers (TFN).

Figure (1) shows the partitioning of inflow

into reservoirs, as one of our premise

variables.

Two different methods were used to

determine the supports (the range between

minimum and maximum) of each fuzzy

number. In the first method, the premise

variables are divided into equally distant

classes where different number of training

data exists for each class. In the second

method, the supports of the fuzzy numbers

are determined in such a way as to have equal

frequencies of the training data located in the

different classes. The two methods were also

used to determine the mean value of fuzzy

numbers. In the first method, the mean value

of each fuzzy number would be the expected

value of all training data located on the

support of this number and is independent of

other premise variables. In the second

method, the mean value of each fuzzy

number in rule “ i ” depends on the other

premise variables of this rule. Suppose each

fuzzy rule “ i ” has m premise variables.

Then, the set  Pi is defined as

and the mean value of fuzzy numbers are

calculated as:

[2]

where ni is the number of elements belonging to

Pi and  aki (s) is the sth (s=1,...,ni) element of

Pi . Each of these elements is located on the

support of the kth(k=1,...,mi) premise

variable of rule “i ”. This support is the range

between li-(k) and li+(k). Therefore aki(s) is

the input part and  bi(s) is the output part of

the training data of the set  Pi . If the  kth
premise variable of the fuzzy rules is divided

into nnk fuzzy numbers, the total number of

rules NR is then given by:

[3]

The consequent of each fuzzy rule “ i ” is

calculated by combining the outputs of all the

data which belong to Pi and then satisfy at

least partially this rule. The degree to which

the sth element of  Pi belongs to the rule “ i ”

is measured by the so-called degree of

fulfillment (dof). In fact, the dof represents

the weight or degree with which each input

data satisfies each fuzzy rule. An input data
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Figure 1. Discretization of inflows to reservoirs and their
membership functions



(aki(s)) consists of m elements each of which

belongs to a fuzzy set by the degree of
mm(aki(s)) . Therefore, the final weight (dof ) of

this input data can be selected as the

minimum degree of satisfaction among these

elements (“min” operator) or product of

different weights (“product” operator). In

general, any T-norm operator, could be used.

Here we apply a parametric “product”

operator as follows:

[4]

where mm(aki(s)) is the membership function of

the  sth element of Pi in the kth premise

variable of the rule “ i ”and “ g ” and “ e ” are

the parameters of the dof values. The

consequence of the rule “i” ( Bi ) is then

calculated through aggregation of all the

output data belonging to Pi by using a

weighed average method given by:

[5]

Parameters “ g ”and “ e ” are two important

parameters which are described in the next

section.

4. DPFRB Model

As  mentioned before, the DPFRB model is a

combination of dynamic programming, fuzzy

rule-based, and simulation models. In

DPFRB, the monthly historical inflows to

reservoirs are divided to two different sets.

One set is used for the DP and FRB models

as training inflows while the other is used for

the simulation model as test inflows. At first,

the DP optimization model is executed and

an optimal set of reservoir releases and

storage volumes are determined. These

optimal storage and reservoir volumes as

well as training inflows are then taken as the

input values of the FRB model to derive the

operating policies in the second step. The

inflows and optimum storage volumes are

taken as the fuzzy premise variables while

the reservoir releases are taken as the

consequences of fuzzy rules. 

Figure 2 shows the flow diagram of the

DPFRB model. The rule system was trained

for each month of a year, separately. The

parameters “ g ” and “ e ” are set equal to 1.0

and 0.0, respectively in the first iteration of

DPFRB model. Following this, the operating

policies or fuzzy rules, determined from the

FRB model, are tested in a simulation model.

Initial reservoir volumes are supposed known

and inflows to reservoirs are presumed

available from the set of test data. The
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reservoir releases are then calculated using

the weighted average method similar to the

way the consequences of fuzzy rules are

determined:

[6]

In equation [6], Rt is the vector of the

reservoir releases during the season t.

For our case study of two reservoirs system;

is the vector of the state

fuzzy variables and                         is the

vector of responses of rule “ i ” obtained

from the FRB model. After calculating the

reservoir releases in each time period, the

reservoir storage volumes are determined

from the continuity equation for the next

period and the process is repeated over the

simulation horizon. To find the best values of

the “ g ” and “ e ” parameters, the simulation

model was imbedded in a direct search

optimization procedure to minimize the value

of the objective function in the simulation.

Subsequently, the best values of these

parameters as well as the test inflows are fed

back to the FRB model, and the fuzzy rules

are established again by the new values of “

g ” and “ e ” and the inflows. This iterative

procedure continues until the best value of

the objective function in the simulation

model is obtained. The DPFRB algorithm

can be summarized as follows:

(i) Derive optimal releases and storages using

DP

(ii) Derive operating rules using FRB. The

input data and the parameters “ g ” and “ e ”

of the FRB model are obtained from (i)

initially and from (iii) during iteration.

(iii) Determine the optimal parameters “ g* ”

and “ e*” using a direct search of “ g ” and “

e ” in simulation.

(iv) Check for satisfaction of stopping

criterion.

(v) If yes then stop else go to step (ii).

In this model, the operating policies are

parameterized in a way as to be able to find

the best values of parameters even for

different objective functions in simulation.

For example, the reliability of meeting the

different types of demands under any other

risk or reliability consideration could be

taken into account as the objective function

in the search algorithm.

Nalbantis and Koutsoyiannis (1997) have

discussed the advantages of parameterized

operating rules. In addition to the flexibility

of parameterized operating rules in satisfying

the different objectives of the system, we use

these parameterized policies as an interface

between the DP and the simulation model.

Usually, after a few iterations, the best value

of the simulated objective function is

obtained and further iteration doesn’t result

in further improvement. The stopping

criterion was selected when the value of

objective function has no improvement in

successive iterations. Although, the objective

function shows further improvement if we

use a finer grid search around the best

obtained values of “ g ” and “ e ”, we

observed that the rate of these later

improvements is very slow and doesn’t

warrant further computations.

5. Implementation and Discussion

The DPFRB model was applied to the

reservoirs system of Dez and Karoon in Iran.

Dez and Karoon drainage basins are located

in the SouthWest region of Iran, carrying

more than one fifth of the surface water

available in the country. Total area of these

basins is about 45,000 square kilometers. The

reservoirs are constructed on Karoon and

Dez rivers and they are named after them.
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The two rivers are joined together at a

location called Band -e- Ghir, in the north of

the city of Ahwaz and form the “Great

Karoon River “. This river passes Ahwaz and

reaches the Persian Gulf in the south of the

city of Ahwaz. Average annual streamflow to

Dez and Karoon reservoirs are 8.5 and 13.1

Billion Cubic Meters (BCM), respectively.

Figure (3) shows the schematic

representation of this system. These two

rivers downstream of Karoon and Dez dams

supply water for the domestic, industrial,

agricultural, and agro-industerial sectors.

Total irrigated land, downstream of Dez and

Karoon dams are estimated to be about

250,000 hectares. Besides the irrigation

benefit from the lands, which are the main

consumer of water in these basins, these two

rivers supply domestic water demand for

cities and towns as well as to main industrial

units such as steel industries and termal

power plants. Total water demand from Dez

and Karoon rivers for all purposes is

estimated to be 1.91 BCM. Thirty five

percent of this amount is allocated to the

downstream of Karoon dam between Karoon

reservoir and Bande-Ghir (first reach), 42

percent is allocated to downstream of Dez

dam (second reach), and the rest to

downstream of Band - e - Ghir to Persian

Gulf (third reach).

To evaluate the DPFRB model, we also

applied the DPR model to this system. The

DPR uses multiple linear regression analysis

to derive the general operating rules. In this

model, the set of optimal solution of DP is

regressed and operating policy is presented

by a linear equation. These regression

equations are then tested in a simulation

model. Following the first iteration, the DP is

repeated by imposing an additional constraint

in which the DP releases are constrained in a

bound of linear releases of the previous

iteration. Using this iterative procedure, the

value of the objective function is improved.

Forty years of historical monthly inflows into

each reservoir are available. Of that, thirty

years of data is used in the DP and the FRB

models and the remaining ten years’ data are

used in the simulation model. Statistical

characteristics of these inflows show the first

ten years of the data belong to a dry period

and the last ten years to a wet period. Table 1

compares the mean and the standard

deviation values of the first and last ten years

of inflows with the value of these statistics

for the total forty years of available inflows.

Because of significant differences between

the statistics of these two parts of inflow time

series, the DPFRB and DPR models are

evaluated under two scenarios. In one of

them, the first thirty years of inflows are used

in the DP model and the last ten years in the

simulation model. In the other scenario, the

first ten years of inflows are used in the

simulation model while the last thirty years

of inflows are used in the DP model. In

another test and under each of the mentioned

scenarios, we have also increased all of the

water demands by multiplying them with a

demand factor of two (demfact=2) to make it

more challenging for the DPFRB and the

DPR models. Table 2 shows the results

obtained from the DPFRB and the DPR

models in each of the scenarios. It should be

noted that from the different types of water

demands, the domestic, industrial, and agro-

industrial usages were satisfied over all the
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   Reach 1         Reach 2  

        Reach 3  

      Band-e-Ghir 

                Dez                                      Karoon      

Figure 3. The shematic of karoon and Dez system



times of the simulation period. Therefore, we

have reported only the reliability of meeting

the agricultural water demand.

In Table 2, NF is the number of

representative discrete storage volumes in the

DP model, NS and NI are respectively the

numbers of fuzzy intervals of storage and

inflow premise variables in the FRB model.

Optimization and Simulation costs are the

average monthly loss of reservoir operation

in DP and simulation models, respectively

and the demand reliability is the percentage

of time the target demand has been satisfied

during the simulation horizon. It should be

noted that the NF , NS , and NI values were

set the same for each reservoir. To avoid the

discretization error in the case of demfact=2

for which the optimization cost is not equal

to zero, we used thirty discrete storage states

for each reservoir in the DP model. However,

we observed that dividing each premise

variable into only three to five fuzzy numbers

is sufficient in the FRB model. This is due to

the fact that the rule-based system tends to be

incomplete and most of the rules are not

applicable if finer discretization is used.

Both methods described in section 3 for

discretizing the premise variables had

approximately similar results. Also, the first

method of determining the mean value of

each fuzzy number showed better results.

Therefore, the mean values of the kth fuzzy

number of each premise variable are the

same for all the rules. From Table 2 and in the

case of usual demands (demfac=1), we see

scenarios in which the value of objective

function is zero under both optimization and

simulation of the DPFRB model. For the

DPR model, there is significant difference

between the values of the objective function

in the DP and the simulation models where

the simulation costs for two wet and dry

scenarios are equal to 459 and 7020,

respectively. Also, the reliability of meeting

the agricultural water demand in the DPFRB

model is higher than what it is for the DPR

model. We can observe in Table 2 that the

DPFRB performs better than the DPR with

respect to the value of the objective function

in simulation as well as in terms of the

reliability in meeting the demands. The

results of both the DPFRB and the DPR
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  Model     Demand   
  Factor   

  NS* 
 

   NI=        DP   
      Cost         

  Simulation     
      Cost           

   Demand 
  Reliability 

DPFRB 
 
DPR 

 
   1 (2)    
 

3 (3)  
 
 

 4 (4)  
 
 

 
0.00 (2070)  
 

0.00 (2180)  
 
459 (3840) 

100.0 (87.5)  
 
97.9 (84.2)  

 

DPFRB 

 
DPR 

 
   1 (2)    
 

3 (3)  
 
 

 4 (4)  
 
 

 
0.00 (324) 
 

0.00 (22500)  
 
7020 (58400)  

100.0 (54.2)  
 
93.3 (49.8)  

For second scenario, 10 first years’ inflows as test data 

Table 2. Comparison between DPFRB and DPR models
For first scenario, 10 last years’ inflows as test data and demfact=1 (or demfact=2) 

Statistics First 10 years of Inflows  
 Mean       SD           CV  

 Last 10 years of Inflows  
 Mean          SD           CV  

Total 40 years of Inflows  
Mean         SD           CV  

Karoon 632.0      336.5        0. 53   1211.8       842.3       0.70  972.6        729.1         0.75  

Dez 493.1      355.8        0.72  885.50       784.4       0.89  724.8         652.0        0.90   
 

Table 1. Statistics of different parts of historical inflows



models in the second scenario are not as good

as the first scenario, especially for demand

factor=2.0, as can be expected but still

DPFRB does perform much better than DPR.

It should be noted that the difference between

the values of the objective functions in DP

and simulation sub-models of DPFRB and

DPR comes from two sources. The first is

due to difficulties of not fitting the operating

rules to optimal values. In fact, the actual

relation between release, storage and inflow

may be highly nonlinear and this non-

linearity should be adequately modeled

through the operating rules.

When the inflows in the DP and the

simulation models are the same, the

operating rules are used for interpolation.

However, when these inflows are different,

we may have some inflows in simulation

beyond the range of the inflows used in the

training of the operating rules. Therefore, in

addition to the capability of policies to fit to

a complex and nonlinear pattern of data, the

capability of operating rules for extrapolation

should also be explored. This extrapolation

can be converted into interpolation if the

policies could be retrained when subjected to

new data. Therefore, there are two different

characteristics of an interface model (FRB or

regression) that are important for developing

the operating rules: its capability to fitting

optimal data obtained from DP and its

flexibility in retraining due to uncertainty of

inflows.

To distinguish between the above aspects,

Table 3 compares the DPFRB and the DPR

models in two different cases: when the

inflows into reservoirs are supposed to be the

same in the DP and the simulation sub-

models and when they are not. This table

shows the results of the first and the best

iterations of the models in the two above

cases. 

The A11 and A12 portions of Table 3 show

the performance of the DPFRB and the DPR

models in fitting the optimal solutions of the

DP model because the inflows into reservoirs

are the same for both the DP and the

simulation models. Comparison between the

results of A11 with A12 shows that the

DPFRB outperforms the DPR with respect to

fitting capability. For example the best values

of simulation cost are 4.36 (2640) in A11

(DPFRB) and 1080 (10200) in A12 (DPR)

cases. We see that the minimum value of the

simulation cost in the DPFRB is less than the

DPR cost for all the cases. This implies that

the fuzzy rules and the tuning of their

parameters in successive iterations results in

a good fitness to the optimal solution of the
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K*    DPFRB                DPR      DPFRB                       DPR  

1 15.6 (2930)       1080 (10200)   309 (30900)             7110 (66700)  

2 4.36 (2640)       1080 (10200)   0.00 (22500)            7020 (58400)  
 

A11== A12== B11==== B12====

** K=1 is corresponding to the first iteration and K=2 is corresponding to the best
== A11/A12 are the values of simulation cost when the first 30 years’ inflows are used both in the DP and the simulation in

the DPFRB/DPR models 
==== B11/B12 are the values of simulation cost when the first 30 years’ inflows are used in the DP and the last 10 years’ inflows
in the simulation the in DPFRB /DPR models.

Same inflows in DP and simulation   Different inflows in DP and simulation

Table 3. Effect of the uncertainty of inflows on the value of simulated cost in DPFRB and DPR models for demfact=1
(demfact=2)Optimum cost in DP= 0.00 (324)



DP model and hence the fuzzy rules can fit to

a nonlinear structure of optimal data better

than the regression based rules.

Comparing B11 to B12 is similar to the

results of Table 2, but comparing the A11 to

B11 or A12 to B12 shows the effect of adding

uncertainty on the performance of models in

addition to the fitting capability. As we

expect in this case, by adding the effect of

uncertainty, the value of simulation cost is

increased in the first iteration. For example in

the DPFRB model, the simulation cost has

increased from 15.6 (2930) to 309 (30900).

After a few iterations, this effect has been

compensated in the DPFRB model and the

simulation cost has reached 0.0 (22500). This

shows that for demfact=1, the iterative

procedure used in the DPFRB model result in

a simulation cost of 0.0, which is equal to the

value of optimization cost. On the other

hand, we observe that even in the case of not

including the uncertainty effect (A11), the

best value of the simulation cost of the DPR

model is equal to 4.36, which is greater than

0.0. For demfact=2, the iterative method has

improved the simulation cost from 30900 to

22500, but this value is still larger than 2640,

which is the best value of the simulation cost

when the uncertainty is not included. 

This shows the significant effect of the

uncertainty in the case of demfact=2.

Similarly, if we compare the results of A12

with B12, it could be observed that the

simulation cost of the DPR model is also

increased due to the effect of uncertainty. For

example, the simulation cost has been

changed from 1080 (10200) to 7110 (66700)

in the first iteration. These values have been

decreased to 7020 (58400) in the best

iteration that is not as good as the

improvement due to iterative procedure of

the DPFRB model. This advantage of the

DPFRB over the DPR is important, because

in the DPFRB model, the time consuming

DP sub-model has to be executed only in the

first iteration, while in the DPR model it is

executed in all the iterations. This feature of

the DPFRB is attractive in terms of minimal

computational resources required, especially

when it is applied to a large-scale

optimization problem. 

6. Summary and Conclusions

A three step Dynamic Programming Fuzzy

Rule-Based (DPFRB) model was presented

and tested in this paper. This model integrates

dynamic programming, fuzzy rule base and a

simulation model. The DP solutions are

trajectories of optimal release and storage

volumes over the planning horizon which

may not be completely useful for real

operators. Closed-loop operating rules are

thus required which are built by using those

trajectories as inputs to an interface model

inferring general operating rules. The

interface model could be a regression, ANN

or any function approximator model which is

able to extract linear or nonlinear

relationships between input and output data

set. In this paper, fuzzy rule base has been

used as the above-mentioned interface

model. Thus, optimal solutions of the DP

model are used to establish the general

operating policies in the FRB model and the

policies obtained are then evaluated in a

simulation model. As the FRB-based policies

have some parameters whose values can be

tuned in simulation, a direct search

optimization method is used to find the best

values of the parameters of the FRB model.

The tuned optimal parameters are sent back

to FRB to create a new set of fuzzy rules and

the procedure continues until the satisfaction

of the stopping criteria. This model is

compared to a model, which uses multiple

linear regression to derive the operating

rules.

The simulated objective function shows how
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effective the derived rules are if they would

have used in system operation. On the other

hand the reliability of meeting demands in

simulation measures how frequent the

failures and successes would occur if the

derived rules were to be used. Thus, the

better values of the simulated objective

function and the higher reliability of meeting

the demand shows the capability of the

DPFRB model in satisfying the objectives of

the system when compared to the regression-

based model. Moreover, the derived

operating rules are in form of fuzzy “if-then”

rules which are easy to understand by human

operators as they are based on linguistic

terms like high inflow, low demand and so

on.
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