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Abstract 

In this study digital image correlation (DIC) technique combined with a high speed video system was used to predict 
movement of particles in a water model. Comparing with Particle-image velocimetry (PIV) technique, it provides a low cost 
alternative approach to visualize flow fields and was successfully employed to predict the movement of particles in a water 
model at different submergence depth using gas injection. As the submergence depth increases, the number of the exposed eye 
is reduced accordingly. At 26.4 cm submergence depth, an exposed eye was found at 1/3 of the submergence depth, whereas 
two exposed eyes were observed at 1/2 depth and near the bottom wall at 24 cm submergence depth. 
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1. Introduction 

Particle-image velocimetry (PIV) is a well-established 
technique for quantitative measurement of velocity fields in 
macroscopic scale [1-11]. In the case of double-pulsed PIV, 
the particles are illuminated either using a pulsed light 
source, or using a continuous light source. It is based on 
measuring displacements of scattering particles between 
successive exposures, which is usually recorded 
photographically. The displacement of the particle images is 
then estimated statistically by correlating the particle image 
pairs [2]. Thus, the whole two-dimensional flow field can be 
measured simultaneously by PIV without disturbing the 
flow field. After the first studies, many investigations have 
been focused at improving its performances [1,12,4], 
including the cross correlation technique [1] and four-step 
particle tracking [13]. A very important step was the 
introduction of the digital recording and treatment of PIV 
images [12]. In 1998 Santiago et al [3] conducted the first 
successful micro-PIV experiment for investigating flows 
around living microorganisms. 

In the last decade, optical digital image techniques for 
strain measurement have advanced significantly because 
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of the availability of cheap and powerful digital 
imaging and data processing hardware. 

Therefore, these advantages enable the digital image 
correlation (DIC) technique to be widely applied in 
determination of two-dimensional displacement field, such 
as the observation of cracks in the brick wall [14] and the 
monitoring of bridges and full-size building elements 
[14,16]. The measured displacement field using DIC 
technique is based on the image correlation function, 
which determines the degree of similarity between two 
digital images of the specimen surface before and after 
deformation. Therefore, in the present study, the optical 
digital image technique combined with a high speed CCD 
camera was employed to visualize the flow fluid in a water 
model to understand inclusion movement. Comparing with 
PIV, it provides an alternative method to determine the 
flow fluid at low cost simple setup.  

Understanding the gas bubble and inclusion movement 
in liquid steel is important to remove and control steel 
quality and properties using gas injection [17-21]. Here a 
water model was employed to simulate the condition of 
liquid steel using the gas injection. In addition the 
behavior of inclusion movement was predicted by tracing 
the particles in the water model. 

2. Methodology 

Digital Image Correlation method is basically taken as 
the foundation of "search to perform mathematical 
calculations ", comparing the partial relativity of two 
images and judging the image towards reflection before 
and after transformation. This concept, which makes use 
of finite element method, will transform in-front and back. 
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It attempts to divide the image body up into a small mesh, 
being called as sub-image. Assuming the one point of sub-
image, which transforms an in-front and back bit in a 
displacement function: 
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The relativity analysis related to transforming in-front 

and back is in accordance with the Digital Image 
Correlation method that judges the degree of transforming 
the image in-front and back. This makes the sum of the 
gray scale inside image equal to the total amount. The 
Digital Image Correlation method is defined as follows: 
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Where, ijg  and 

ij
g~  are grey scale of image A on 

coordinate (i, j) and image B on coordinate ( i , j ), 

respectively. And coordinate ( i , j ) of image B 

corresponds to coordinate (i,j) of image A. 
If optimal function parameters for every sub-image are 

recognized, the corresponding coordinates of every 
deformed or un-deformed sub-image can be obtained. 
Accordingly, the displacement and strain field can be 
computed individually. 

3. Experimental Setup 

The fluid flow in a water model was visualized using 
DIC. The water model was represented by a transparent 
vessel of plexi-glass. During gas injection, a series of 
digital images were recorded to determine the fluid flow in 
the water model. 

The set-up for the determination of fluid flow (Fig. l) 
consisted of a cylindrical plexi-glass vessel that contained 
tap water at room temperature. The vessel was 100 mm 
wide, 270 mm high, and 2 mm thick. Before injection, 
300,000 spherical particles of low-density polyethylene 
with a density of 0.92 g/cm3 were on the top surface. 
Using a compressor, air was injected through a centric top 
nozzle into the bath at a flow rate of 4 L/min. The nozzle, 
having an inner diameter of 1.2 mm and an outer diameter 
of 5.0 mm, was located at 26.4 and 24 cm below the top 
surface, respectively. 

To simulate a quasi-2D projected area, light was 
limited to pass through two narrow parallel planes (Fig. 1). 
A high speed video system, NAC Memrecam GX 3 with a 

520 × 512 pixel resolution, was employed to capture 750 
frames per s after 10 s injection time. 

 

 
Fig. 1 The schematic set up of flow field measurement for a 

water model 

4. Results and Discussion 

4.1. Determination of fluid flow 

In the current study, a new method to measure the fluid 
flow using DIC combined with high speed video system 
was proposed. Examples of the injection process at depths 
of 26.4 and 24 cm are shown in Fig. 2. An asymmetrical 
plume zone consisting of injected gas bubbles was 
observed at the center of the image in both cases. The 
dynamic shape changes of the resultant gas bubbles 
hindered the tracing of the bubble movement. Therefore, 
the images for DIC measurements were captured on the 
areas without the gas bubbles. 

Figs. 3(a) and (b) show the serial photos captured by 
the high speed video system after a time interval of 1/750 s 
in which Fig 3(a) was used as a reference image. The 
negative images of the original images [Figs. 3(c) and (d)] 
were produced. After the negative image processing, the 
analyzed area of the reference image was marked with the 
32 × 32 pixel grid [Fig. 4(a)]. The procedure for DIC 
analysis was described in the authors’ previous study 
where the resolution of this technique was set at 
approximately 10-4 [17, 18]. Using DIC, the new positions 
in the marked area after 1/750 s were calculated in Fig. 
4(b). The displacement of each point in Fig. 4(c) was 
determined, and the displacement distribution in the 
analyzed area is presented in Fig. 4(e). The fluid velocity 
at each point was obtained by dividing the displacement 
with the interval time. 



370 J-Ch Kuo, Sh-H Tung, M-H Shih, W-P Sung, T-Y Kuo, Ch-H Wu, W-S Hwang 

 
(a) (b)

Fig. 2 Flow pattern for vertical injection direction at (a) 26.4 and (b) 24 cm submergence below the water surface. The dashed line represents 
the plume zone 

 

 
(a) (b) 

 
(c) (d) 

Fig. 3 (a) The reference image and (b) an analyzed image after 1/750 s, whereas (c) and (d) are the negative images of (a) and (b), 
respectively 
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(a) (b) 

(c) (d) 
Fig. 4 (a) The initial grid in the reference image, (b) the grid in the analyzed image after 1/750 s obtained using DIC, (c) the analyzed image 

that overlapped with the initial grid, and (d) the flow field distribution in the analyzed image obtained using DIC 
 

4.2. Effect of the submergence depth on the flow pattern 

The flow patterns for the injection process at the 
submergence depths of 26.4 and 24 cm are shown in Figs. 
2(a) and 2(b), respectively. A plume zone is asymmetrical 
about the centric nozzle in the middle area for both cases. 
In this zone, the carrier gas rises to the free surface and 
induces recirculation flows of fluid within the vessel. 
According to the macroscopic plume model proposed by 
Sahai and Guthrie [19], the average velocity of a plume, 

PU , is estimated by 

 
3/14/13/1

p RLQkU   (3) 

 
where Q is the gas flow, L is the liquid depth, and R is 

the ladle radius. According to Equation (1), an increase in 
the nozzle depth causes the recirculation speeds to 
increase. 

In addition to the plume zone, flow fields were 

visualized using 2D DIC by scanning a plane near the 
nozzle [Figs. 5(b) and 6(b)]. At 26.4 cm depth, an exposed 
eye was created at 1/3 of the submergence depth in Fig. 
5(b). The position of the eye corresponds to that in the 
flow pattern after prolonged exposure obtained from a 
CCD camera in Fig. 5(a). The velocity vectors were almost 
pointing toward the nozzle. The bubbles near the nozzle 
had enough buoyant force to rise to the free surface of 
water. These rising bubbles created upward flows and 
formed the exposed eye. 

For the 24 cm depth, two exposed eyes were observed 
at 1/2 depth and at the bottom [Fig. 6(b)]. The size of the 
upper exposed eye at 24 cm depth was smaller than that at 
26.4 cm depth [Figs. 5(a) and 6(a)]. The lower part of 
Figure 6(b) shows upward flows near the outlet port. 
These upward flows produced the recirculation as marked 
with the lower exposed eye. Compared with that at 24 cm 
depth, this recirculation was limited because of the small 
distance between the outlet and the bottom wall. 
Therefore, no low exposed eye was observed. 

In summary, in this study, the DIC technique was 
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successfully applied to predict the movement of particles 
in a water model. The results are important to 
understanding the gas bubble and inclusion movement in 
liquid steel in order to remove and control steel quality and 

properties using gas injection. The approach also provides 
a low cost method to determine the flow fluid in a water 
model. 

 

 
(a) (b) 

Fig. 5 (a) The flow pattern after prolonged exposure using a CCD camera and (b) the flow field map using DIC analysis with a high speed 
video system at 26.4 cm submergence depth.  

 

 
(a) (b) 

Fig. 6 (a) The flow pattern after prolonged exposure using a CCD camera and (b) the flow field map using DIC analysis with a high speed 
video system at 24 cm submergence depth 
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5. Conclusions 

In this investigation, DIC technique combined with a 
high speed video system provides a low cost alternative 
approach to visualize flow fields in a water model. It was 
successfully applied to predict the movement of particles 
in a water model. At 26.4 cm submergence depth, an 
exposed eye was found at 1/3 of the submergence depth. 
At 24 cm submergence depth, two exposed eyes were 
formed at 1/2 of the submergence depth and near the 
bottom wall. 
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