
International Journal of Civil Engineering, Vol. 12, No. 1, Transaction B: Geotechnical Engineering, January 2014 

 

Technical Note 

A simplified approach to estimate the resultant force for the equilibrium of 
unstable slopes 

C.S. Vieira1,* 
Received: July 2012, Revised: November 2012, Accepted: May 2013 

 
Abstract 

This paper presents a simplified approach to estimate the resultant force, which should be provided by a retention system, 
for the equilibrium of unstable slopes. The results were obtained with a developed algorithm, based on limit equilibrium 
analyses, that assumes a two-part wedge failure mechanism. Design charts to obtain equivalent earth pressure coefficients are 
presented. Based on the results achieved with the developed computer code, an approximate equation to estimate the 
equivalent earth pressure coefficients is proposed. Given the slope angle, the backslope, the design friction angle, the height of 
the slope and the unit weight of the backfill, one can determine the resultant force for slope equilibrium. This simplified 
approach intends to provide an extension of the Coulomb earth pressure theory to the stability analyses of steep slopes and to 
broaden the available design charts for steep reinforced slopes with non-horizontal backslopes. 
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1. Introduction 

The construction of a slope steeper than the naturally 
stable angle requires additional stabilising forces. These 
forces can the provided by a heavy facing system (such as 
gabions or large rocks) or by horizontal reinforcements placed 
in the embankment. The results herein presented can be 
applied to the internal design of geosynthetic reinforced steep 
slopes and, also, to the design of a stable facing system. 

In the last decades some methods have been proposed 
for the internal design of geosynthetic reinforced soil 
structures. These methods can be grouped into three 
different approaches. The first approach, usually limited to 
reinforced soil slopes, is an extension of the classical limit 
equilibrium slope stability methods (methods of slices) 
with the inclusion of the reinforcement forces ([1], [2], 
[3]). The second approach is based on considerations of 
limit equilibrium, such as two-part wedge or logarithmic 
spiral analyses ([4], [5], [6], [7]). The third is a kinematic 
approach of limit analysis and can be performed 
considering a continuum medium, through the soil and 
reinforcement homogenization, or two separated structural 
components – soil and reinforcement components ([8], 
[9]). This paper follows the second approach. 
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The horizontal resultant force due to lateral earth 
pressures that should be supported by the reinforcement 
layers or by the facing system to ensure the structure 
equilibrium is usually determined by limit equilibrium 
analyses. The failure surface associated with the maximum 
value of this horizontal force defines the critical surface. 

The resultant force to be taken by the reinforcement 
layers is equal to the resultant of the assumed earth 
pressure distribution, considered as a function of the earth 
pressure coefficient. This paper presents updated results 
from a developed computer program, based on limit 
equilibrium analysis, able to calculate the resultant force 
for structure equilibrium under static and seismic loading 
[10]. Based on the results derived from the developed 
computer code, an approximated equation for earth 
pressure coefficients estimation is proposed. Simplified 
equations to estimate earth pressure coefficients for static 
and seismic design of geosynthetic reinforced structures 
were previously proposed by [6] but these equations are 
limited to horizontal backslopes. 

The design of geosynthetic reinforced steep slopes is 
often based on design charts such those proposed by [4] 
and [5]. These design charts are, usually, limited to 
horizontal backslopes. Ghanbari and Ahmadabad [11] 
proposed a formulation to estimate active earth pressures 
for inclined walls, considering a plane failure surface, but 
the presented results are also limited to horizontal 
backslopes. The purpose of this paper is to broaden the 
available design charts for steep reinforced slopes with 
non-horizontal backslopes and, simultaneously, to simplify 
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the evaluation of the earth pressure coefficient through the 
proposal of an approximate equation. 

2. Limit Equilibrium Approach 

The two-part wedge failure mechanism is, as 
mentioned before, one of the limit equilibrium approaches 
suitable for the evaluation of the resultant force for 
unstable slopes equilibrium. In the two-part wedge 
mechanism, the potential sliding soil mass is divided in 
two blocks (Fig. 1). The required force for equilibrium, Pa, 
is represented in Fig. 1 at the face of the structure.  

Usually, the horizontal component of the earth pressure 
coefficient is the parameter used in the analysis of facing 
stability or reactive force in reinforcements, hence the 
required force for equilibrium force, Pa, was considered 
horizontal. 

 

 
Fig. 1 Potential failure surface: (a) geometric characteristics of 

the slope; (b) two-part wedge failure mechanism. 
 
A vertical inter-wedge potential failure surface was 

assumed. The inter-wedge force was considered by its 
horizontal and vertical components, H and V, related by 
the following equation: 

 

 (1) 
 
where  is the inter-wedge mobilized shear stress ratio 

and  is the soil internal friction angle. 
The effect of the direction of the inter-wedge force, 

expressed by , on the earth pressure coefficient, Kreq, was 
analysed by [10]. This author found that a horizontal inter-
wedge force ( = 0) is very conservative when compared 
with log spiral failure mechanism. Considering this 
conclusion and taking into account that it was assumed the 
fully mobilization of the soil shear strength along the 
failure surfaces OA and AB (Fig. 1), the present study 
considers  = 1 (soil shear strength fully mobilized in the 
inter-wedge vertical surface). 

Obviously, the geometry of the blocks that leads to the 
maximum value of the resultant force for equilibrium, i.e., 
the geometry shown in Fig. 1, is not known. Thus a 
computer code was developed to find the most critical 
failure surface, i.e., the one that leads to the maximum 
horizontal force, Pa. 

To find the critical failure surface the software creates 
a square mesh of points, with lateral side equal to the 
height of the structure and spacing between points equal to 
1% of the mesh side. For each of these points (represented 
by point A in Fig. 1), several potential failure surfaces are 

analyzed, ranging the angle 1 (see Fig. 1) from 2 to 90º 
with increments of 0.1º. 

The two-part wedge failure mechanism degenerates to 
a single wedge with a plane failure surface when this 
mechanism is more adverse (when the slope face is near 
vertical). 

The equilibrium equation, on horizontal direction, of 
the forces acting on wedge 1 (Fig. 1), taking into 
consideration the relation between the horizontal and 
vertical components of the inter-wedge force stated by 
Equation (1), provides the horizontal component of the 
inter-wedge force, H: 

 

 

(2) 

 
Known the horizontal component of the inter-wedge 

force, H, the required force for equilibrium, Pa, can be 
calculated, for each potential failure surface, by the 
equilibrium, on horizontal direction, of the forces acting 
on wedge 2, with the equation: 

 

 
(3) 

 
The bilinear failure surface to which corresponds the 

maximum value of Pa, is considered the critical failure 
surface. 

The need of reinforcement or the need of the facing 
system to reach the slope equilibrium may be represented 
by an earth pressure distribution. By the similarity between 
critical potential failure surfaces, Terzaghi [12] 
demonstrated that the earth pressure distribution at the 
back of a wall increases, like a hydrostatic pressure, in 
simple proportion to depth. Based on this, Jewell [5] stated 
that the magnitude of the maximum reinforcement force 
required for equilibrium increases with the square of the 
slope height. Therefore, assuming that these earth 
pressures (or required tensile strengths for equilibrium) 
increase linearly with depth, the required force for 
equilibrium, Pa, could be expressed by: 

 

(4) 

 
where Kreq is an equivalent earth pressure coefficient,  

is the soil unit weight and H is the slope height. The results 
will be expressed, in sequence, by the equivalent earth 
pressure coefficient. This earth pressure coefficient can be 
used to determine the required tensile strength of the 
reinforcement or to design the slope facing system. 

3. Results and Discussion 

The results presented in this paper regards a purely 
frictional backfill material, with internal friction angle in 
the range of 20º-45º, slope angles between 40º and 90º, 
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backslope angles in the range 0º-18.4º, zero pore water 
pressure (ru = 0) and a competent foundation. 

Fig. 2 summarizes the earth pressure coefficients as a 
function of the slope angle, , and design friction angle, 
d, for different backslopes: from horizontal (Fig. 2a) to a 
backslope angle of 18.4º (1V:3H). Note that the backslope 

angle was expressed in Fig. 2 by the ratio of the vertical to 
the horizontal distances. It should be, also, mentioned that 
the results presented in Fig. 2a are equivalent to those 
reported by [5] and [13] for zero pore water pressure 
(ru = 0). 

 

(a) (b) 

(c) (d) 
Fig. 2 Design charts for different slope and soil friction angles: (a) horizontal backslope; (b) backslope angle,  =atan (0.1); (c) = atan 

(0.2); (d)  = atan (0.33). 
 
The effect of the backslope on the required force for 

equilibrium seems to increase with slope angle, . 
Assuming a design friction angle, d, equal to 30º, the 
earth pressure coefficient, Kreq, increases approximately 
23% and 29% when the backslope ranges from horizontal 
to an angle of 18.4º, for  = 60º and  = 80º, respectively. 
These variations decrease, respectively, to 11% and 18% 
for a design friction angle of 40º. 

The influence of the backslope angle on the required 
force for equilibrium, as a function of the soil friction angle, 
is illustrated in Fig. 3 for  = 60º and  = 80º. This figure 
corroborates that the effect of the backslope on the required 

force for equilibrium decreases with the soil friction angle. 
The analysis of Fig. 3 also shows that the effect of the 
backslope is more significant for steeper slopes. 

Fig. 4 illustrates the effect of soil friction angle on 
critical failure surfaces for embankments with slope angles 
of 60º (Fig. 4a) or 80º (Fig. 4b) and a backslope angle of 
11.3º (1V:5H). As expected the volume of soil potentially 
in failure decreases with the soil friction angle. While the 
potential failure surfaces for  = 60º are bilinear (Fig. 4a), 
for the steeper slope the critical failure surfaces become 
planar (Fig. 4b) and coincident with those admitted in 
Coulomb’s earth pressure theory [14]. 

Fig. 4a evidences that the Coulomb’s earth pressure 
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theory is not suitable to estimate the potential failure 
surface for an embankment with slope angle of 60º.  

 

 

(a) (b) 
Fig. 3 Effect of the backslope angle on the required force for equilibrium: (a) slope angle,  = 60º; (b) slope angle,  = 80º. 

 

(a) (b) 
Fig. 4 Effect of soil friction angle on critical failure surfaces for backslope angle,  = atan (0.2): (a) slope angle,  = 60º; (b) slope angle, 

 = 80º. 
 
The potential failure surface for a two-part wedge 

failure mechanism to which corresponds the maximum 
value of the horizontal force for slope equilibrium (critical 
failure surface) and the Coulomb failure surface, for 
 = 60º and soil friction angle of 35º are illustrated in Fig. 
5. The potential failure surface derived from the equation 
proposed by [11] (for the angle of the failure wedge) is 
also represented in Fig. 5. For static conditions, the study 
presented by [11] gives coincident results (potential failure 
surfaces and earth pressure coefficients) with those 
achieved by the Coulomb’s earth pressure theory [14]. 

Fig. 5 includes the comparison between the earth 

pressure coefficient obtained by the developed code and 
the value estimated by the Coulomb’s theory. As it will be 
demonstrated in Section 4, when the slope angle, , 
deviates from 90º, Coulomb theory should not be used to 
estimate the value of Kreq, since it does not correspond to 
the maximum value of the horizontal force to reach the 
slope equilibrium. 
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Fig. 5 Comparison of the critical failure surface achieved by the 

two-part wedge mechanism with those admitted by other authors, 
 = 60º ;  = atan (0.2).  

4. Simplified Approach 

In the particular case of geosynthetic reinforced 
structures, the design is usually performed using design 
charts ([4], [13]). To avoid the use of design charts and the 
need of extrapolation for values not included on them, and 
thus, to simplify the evaluation of the earth pressure 
coefficient, an approximate equation suitable for non-
horizontal backslopes is proposed. Vieira et al. [6] 
presented a similar approach, limited to horizontal 
backslopes, considering logarithmic spiral potential failure 
surfaces. 

Under the Coulomb’s earth pressure theory [14], the 
active earth pressure coefficient for a structure with slope 
angle, , backslope angle, , backfill internal friction 
angle, , and friction angle between the soil and the wall, 
, (Fig. 6) may be calculated by the equation: 

 

(5) 

 
The reinforcement layers are usually placed 

horizontally, then they should support the horizontal earth 
thrust (or horizontal force for slope equilibrium). 
Assuming the angle  (Fig. 6) equal to (90º-), Equation 
(5) may be rewritten as: 

 

(6) 

 

Fig. 6 Definition of the angles in the earth pressure coefficient 
equations (adapted from [6]). 

 
As mentioned before, when the slope angle, , is not 

close to 90º, Equation (6) is not suitable to estimate the 
equivalent earth coefficient, Kreq, seeing that the values 
estimated by Equation (6) do not correspond to the 
maximum values of the horizontal earth thrust, Pa. 
Applying a correction factor to the last equation, 
depending on the slope angle, , on the backslope angle, 
, and on the backfill internal friction angle, , it is 
possible to estimate, by the following equation, the earth 
pressure coefficient, Kreq: 

 

(7) 

 
Table 1 compares the values of Kreq obtained by the 

developed computer program with those estimated with 
Equation (7) and also with the values calculated by the 
Coulomb earth pressure theory. When the structure face 
deviates from the vertical, the value obtained with 
Coulomb equation does not correspond to the maximum 
value of the earth thrust, Pa. Indeed, Table 1 shows that 
when  < 80º, Coulomb earth pressure coefficients are 
smaller than those corresponding to the maximum value of 
the horizontal earth thrust. 

The differences between the earth pressure coefficients 
obtained by the developed computer code and those 
estimated by Equation (7) are also illustrated in Fig. 7 for 
backslope angles of 5.7º (1V:10H) and 18.4º (1V:3H). 
From the analysis of Fig. 7 and Table 1, it may be 
concluded that the values obtained by Equation (7) are 
very close to those achieved with the computer code. 
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Table 1 Comparison of Kreq values obtained by Equation (7) with those achieved with the developed software and Coulomb earth pressure 
theory, for backslope angle  = atan (0.2) 

Kreq  (º) 
 (º)

20 25 30 35 40 45 

C
ou

lo
m

b 
th

eo
ry

 

50 0.201  0.121  0.069  0.036  0.015  0.003 
60 0.284  0.193  0.129  0.083  0.050  0.026 
70 0.372  0.272  0.198  0.142  0.098 0.065 
80 0.469  0.362  0.280  0.214  0.161  0.118 
90 0.584  0.472  0.380  0.304  0.241  0.188 

C
om

pu
te

r 
pr

og
ra

m
 50 0.259  0.160  0.095  0.052  0.024  0.007 

60 0.323  0.221  0.150  0.098  0.061  0.034 
70 0.387  0.284  0.208  0.150  0.105  0.071 
80 0.469  0.362  0.280  0.214  0.161  0.118 
90 0.584  0.472  0.380  0.304  0.241  0.188 

P
ro

po
se

d 
eq

ua
ti

on
 50 0.254  0.155  0.090  0.046  0.019  0.004 

60 0.319  0.218  0.147  0.095  0.057  0.030 
70 0.384  0.282  0.206  0.148  0.103  0.068 
80 0.468  0.362  0.279  0.213  0.160  0.117 
90 0.584  0.472  0.380  0.304  0.241  0.188 

 

 
(a) (b) 

Fig. 7 Comparison of Kreq values obtained by the developed computer program and by Equation (7) for: (a) backslope angle,  = atan (0.1); 
(b) backslope angle,  = atan (1/3). 

 
The comparison of the earth pressure coefficients 

obtained by the developed algorithm with values published 
in the literature was presented by [6] for horizontal 
backslopes. Published results that consider non-horizontal 
backslopes are very scarce. So, it has been decided to 
compare earth pressure coefficients estimated by Equation 
(7) with published results based on limit analyses [15, 16] 
and horizontal backslopes ( = 0).  

Table 2 presents a comparative summary for structures 
with slope angle, , equal to 45º and 60º and distinct soil 
internal friction angle, . The values imputed to [15] and 
[16] were read from the published charts, so they appear 
only with two decimal digits. Earth pressure coefficients 
estimated by Equation (7) for the steeper slope,  = 60º, 
are coincident to those published by [15] and [16]. For 
 = 45º the values estimated by Equation (7) tend to be 
slightly lower than those reported by [15] and [16]. 

However, should not be despised the difficulty of reading 
in charts so lower values. 

 
Table 2 Comparison of earth pressure coefficients estimated by 

Equation (7) with values published in the literature ( = 0). 

 (º)  (º) 
Equation 

(7) 
Nouri et 
al. [15]* 

Michalowski 
[16]* 

45 

25 0.112 0.13 0.12 
30 0.060 0.08 0.07 
35 0.025 0.04 0.04 
40 0.006 0.01 0.01 

60 

25 0.198 0.20 0.20
30 0.139 0.14 0.14 
35 0.093 0.09 0.10 
40 0.057 0.06 0.06
45 0.031 0.03 0.03 

*Values read in charts 
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Equation (7) is a very good and simple approach to 
estimate the earth pressure coefficient, Kreq, for the design 
of geosynthetic reinforced soil structures or to quantify the 
resultant force for the equilibrium of unstable slopes. 
Given the slope angle, the backslope, the design friction 
angle, the height of the slope and the unit weight of the 
backfill, it is possible to quickly determine, by Equations 
(7) and (4), the resultant force for the slope equilibrium. 

It should be noted that the proposed equation is limited 
to purely frictional backfill material, null pore water 
pressures and static loading conditions. 

5. Conclusions 

This paper presented a limit equilibrium approach 
which uses a two-part wedge failure mechanism to achieve 
the horizontal resultant force needed to the equilibrium of 
an unstable slope. This force can be supported by the 
facing system (such as gabions or large rocks) or 
geosynthetic reinforcement layers. 

It was confirmed that the use of Coulomb earth 
pressure theory to evaluate the resultant force is only 
accurate for nearly vertical slopes ( > 80º). For flatter 
slopes, Coulomb earth pressure coefficients is 
unconservative and should not be used to evaluate the 
resultant force needed to the structure stability. 

Design charts and an approximate equation were 
presented. Given the slope angle, the backslope and the 
internal friction angle of the backfill material, it is possible 
to obtain an earth pressure coefficient to calculate the 
resultant force needed to provide a stable slope. Compared 
with design charts published by other authors, the results 
presented in this paper include the effect of the backslope. 
On the other hand, the proposed equation is easily 
introduced into a scientific calculator and therefore 
simplifies the evaluation of the earth pressure coefficient. 
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