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1.Introduction

The concrete behaves differently under

different types and combinations of stress

conditions due to the progressive microcracking

at the interface between the mortar and the

aggregates (transition zone) [1]. Structural fire

safety is one of the primary considerations in the

design of high-rise buildings and infrastructures,

where concrete is often the material of choice for

structural members. At present, the fire resistance

(structural fire safety) of reinforced concrete

(RC) members is generally established using

prescriptive approaches that are based on either

the standard fire resistance tests or empirical

calculation methods. These approaches have

major drawbacks and do not provide rational and

realistic fire safety assessment. As the world is

moving toward performance-based fire codes,

there is an increased focus on the use of

numerical methods for evaluating fire

performance of structural members. Because the

fire performance of structural members depends

on the properties of the constituent materials,

knowledge of high-temperature properties of

concrete is critical for fire resistance assessment

under performance-based codes [2]. 

The parameters that control concrete behavior

are: compressive strength, tensile strength, peak

strain, modulus of elasticity, creep strain, thermal

conductivity, thermal strain, and etc that are

nonlinear functions of temperature. Also,

aggregate types of concrete influence the

concrete behavior exposed to fire [3]. The

aggregates thermal expansion is partly opposed

to the drying of cement paste. This phenomenon

makes it possible to think that limestone

aggregates whose thermal coefficient of

expansion is lower than that of siliceous

aggregates is more favorable to the behavior at

high temperature of concrete [4]. Many

compressive and tensile constitutive models for

concrete at normal temperatures are developed.

The constitutive laws of concrete materials under

fire condition are complicated and knowledge of

current thermal properties is based on the limited

material properties. There are either limited test
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data for some high-temperature properties, or

there are considerable variations and

discrepancies in the high-temperature test data

for other properties of concrete [5-7]. These

variations and discrepancies are mainly due to the

differences in test methods, condition of

procedures, and the environmental parameters

accompanying the tests [8-9]. Thus, at present,

there are no reliable constitutive relationships in

codes and standards for many of the high-

temperature properties of concrete [6, 9]. There

have been significant efforts in computational

mechanics to describe the behavior of concrete

using various proposed models [10]. Although

the computational methods and techniques for

estimating the fire performance of structural

members of buildings are developed but

researches that provide inputting data such as

constitutive laws of concrete materials into these

computational methods has not kept pace [11].

Much of information in ACI216R [12] is based

on experimental test results undertaken during

1950s and 1960s that contains no comprehensive

constitutive relationships [2]. The modeling of

concrete considers cracking, crushing failure

modes and nonlinear behavior [13].

There is an urgent need to establish

constitutive relationships for modeling the fire

response of concrete members. Regression

analyses are conducted on available experimental

data in literature to propose compressive

strength, tensile strength and compressive elastic

modulus. Firstly, the proposed relationships for

mechanical properties, i.e. compressive strength,

tensile strength and modulus of elasticity, are

compared with test results. Secondly, the

influence of high temperatures is discussed in

light of the available models of peak strain (strain

at peak stress). Thirdly, the proposed

compressive and tensile stress–strain

relationships for concrete at elevated temperature

are compared with test results.

2. Compressive Strength of Concrete at Elevated

Temperatures

The residual compressive behavior of concrete

has been under investigation since the early

1960s (see the contributions by Zoldners,

Dougill, Harmathy, Crook, Kasami et al.,

Schneider and Diederiches, all quoted in RILEM,

1985 [14]). Attention has been focused mostly on

the compressive strength (the strength at room

temperature after a specimen has been heated to a

test temperature and subsequently cooled) as

such, on the residual strain and on strength
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Table1. Compressive strength models of concrete at high temperatures
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recovery with time [15]. The most important

models of the compressive strength of concrete at

high temperature in the literature are summarized

in Table 1. In this study, the relationships

proposed for the compressive strength of

siliceous aggregate, calcareous and lightweight

aggregate concrete at elevated temperature that

regression analyses are conducted on existing

experimental data to propose them are expressed

as Eqs. (1-3). These proposed relationships are

compared separately with test results and with the

models in Table 1, as shown in Figures 1-3.

Siliceous aggregate concrete: 

(1)

Carbonate aggregate concrete:

(2)

Lightweight aggregate concrete:

(3)

Figures 1-3 show the variation of compressive

strength test results and the available models with

temperature for concrete. Figure 1 makes

comparison between the models in Table 1 and

the proposed relationship for concrete at different

temperatures against published unstressed

experimental test results (unstressed tests: the

specimen is heated, without preload, at a constant

rate to the target temperature, which is

maintained until a thermal steady state is

achieved) (Diederichs et al. [26], Castillo and

Durrani [27], Furumura et al. [28], Chang et al.

[25], and Sancak et al. [29]). Concrete typically

loses 10 - 20% of its original compressive

strength when heated to 300 °C, and 60 - 75% at

600 °C. The models described by Lie and Lin

[16] and Lie et al. [17] provide the upper and

lower bounds for fcT'. The proposed relationship

fits the test results well. Figure 2 shows a

comparison between the models in Table 1 and
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Fig.1. Comparison between compressive strength of siliceous aggregate concrete at elevated temperatures with experimental

data
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relationship agrees with the test results fairly

well. Figure 3 shows a comparison between the

previous models (Table 1) and the relationship

proposed here for high-strength lightweight

aggregate concrete and the unstressed

experimental results reported by Abrams [30] and

Sancak et al. [29]. The proposed relationship fits

the experimental results well in comparison with

others. Lightweight concrete has less strength

loss at high temperature compared to ordinary

aggregate concrete. The behavior of calcareous

aggregate and lightweight aggregate concrete

was about the same over the entire temperature

range and retained more than 75% of the original

strength at temperatures up to 649 °C.

3. Tensile Strength for Concrete at Elevated

Temperatures

Research studies on tensile strength of

concrete at elevated temperatures are much more

limited. As documented in the literature, four

models are available to evaluate the residual

tensile strength of concrete at elevated

Fig.2. Comparison between compressive strength of carbonate aggregate concrete at elevated temperatures with

experimental data

Fig. 3. Comparison between compressive strength of lightweight aggregate concrete at elevated temperatures with

experimental data
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temperature, and these are summarized in Table

2. Here, a model is proposed to evaluate the

tensile strength of concrete at elevated

temperature that regression analyses are

conducted on existing experimental data to

propose it which is expressed as Eq. (4).

(4)

Figure 4 shows a comparison between the

models in Table 2 and the proposed relationship

for tensile strength of concrete against the

experimental results reported by Lie [35],

Andeberg and Thelandersson [36], Noumowe et

al. [37] and Xu et al. [38] that indicates the

accuracy of the proposed relationship. The

residual tensile strengths of concrete decreased

similarly and almost linearly with increase of

temperature.

4. Elastic Modulus at Elevated Temperatures

The elastic modulus of concrete could be

affected primarily by the same factors

influencing its compressive strength concrete

[39]. The most important available models for

elastic modulus of concrete at high temperatures

are summarized in Table 3. Here, a relationship

for the elasticity modulus of concrete at elevated

temperatures is proposed that regression analyses

are conducted on existing experimental data to

propose it and is expressed as Eq. (5).

(5)

Figures 5 provides a comparison between the

Table 3 models and the developed model for
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Table 2. Tensile strength models of concrete at high temperatures

Fig. 4. Comparison between tensile strength for concrete at elevated temperatures with experimental data
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Fig.5. Comparison between elastic modulus of concrete at elevated temperatures with experimental data
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Diedreichs et al. [26], Castillo and Durani [27]

and Furumura et al. [28]. The developed model is

fitted well with mostly of the experimental

results. 

5. Peak Strain at Elevated Temperatures

The most important models for peak strain of

concrete at high temperatures are summarized in

Table 4. As reported by Youssef and Moftah [43],

the models from Lie [35] and Li and Purkiss [23]

provide an upper bound for peak strain at

elevated temperatures and Lu and Yao (reported

in [34]) provides a lower bound. Among the

available models in the literature, Terro’s model

[33] has the advantage of accounting for different

compressive stress levels and providing good

accuracy.

6. Concrete Stress-Strain Relationship at Elevated

Temperatures

6.1. Compressive Stress-Strain Relationships at Elevated

Temperatures

The most important available compressive

stress–strain relationships for concrete at high

temperatures are summarized in Table 5. In this

Fig. 6. Comparison between compressive stress-strain relationships for concrete at elevated temperatures with Chang et al.

[25] experimental data at 20°C

Fig.7. Comparison between compressive stress-strain relationships for concrete at elevated temperatures with Chang et al.

[25] experimental data at 203°C
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study, a compressive stress–strain relationship for

concrete at elevated temperatures that is based on

Carreira and Chu [44]’s model with several

modifications and is developed by using

proposed compressive strength and elastic

modulus relationships (i.e. Eq. (1-3 and 5)),

which is expressed as Eq. (6).

(6) 

Figures 6-7 provide a comparison between the

Table 5 relationships and the developed

relationship for concrete against experimental

results of Chang et al. [25] at 20 °C and 203 °C.

The proposed model has good agreement with the

experimental results. Figure 8 shows a

comparison between the Table 5 relationships

and the developed relationship for concrete
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developed compressive stress-strain relationship
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Table 5. Compressive stress-strain relationships at elevated temperatures
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Fig. 8. Comparison between compressive stress-strain relationships for concrete at elevated temperatures with En 1992-1-2

[18] experimental data at 100°C

Fig. 9.Comparison between compressive stress-strain relationships for concrete at elevated temperatures with Furumura et

al. [28] experimental data at 500°C

Fig. 10. Comparison between compressive stress-strain relationships for concrete at elevated temperatures with Furumura et

al. [28] experimental data at 700°C
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Fig. 11. Comparison between the developed tensile stress-strain relationship for concrete (72 MPa) at elevated temperatures

with Felicetti et al. [46] experimental data at 20°C

Fig. 12. Comparison between the developed tensile stress-strain relationship for concrete (72 MPa) at elevated temperatures

with Felicetti et al. [46] experimental data at 105°C

Fig. 13. Comparison between the developed tensile stress-strain relationship for concrete (72 MPa) at elevated temperatures

with Felicetti et al. [46] experimental data at 250°C
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is developed by using proposed residual tension

strength and elastic modulus relationships (i.e.

Eqs. (4-5)), which is expressed as Eq. (7).

(7)

Figures 11-14 compare the developed tensile

relationship and experimental results of Felicetti

et al. [46] for concrete at 20°C, 105°C and 250°C

temperatures. The developed relationship is

rational and has good agreement with the

experimental results.

7. Conclusions

In this paper, constitutive models and

relationships for concrete subjected to fire are

developed, which are intended to provide

efficient modeling and to specific fire-

performance criteria of the behavior of concrete

structures exposed to high temperatures.

Attempts made towards achieving rational and

well-founded constitutive models and

relationships for concrete elevated temperatures.

The major conclusions derived from the present

work are:

1. The developed models for compressive

strength of concrete at elevated

temperatures for siliceous, carbonate and

lightweight aggregate concretes are

verified well to the experimental results.

2. The developed model for elasticity

modulus of concrete at elevated

temperatures is rational and compatible

with the experimental results. 

3. The developed compressive stress-strain

relationship of concrete at elevated

temperatures is made based on the well-

established relationships for concrete at

ambient temperatures, which has a good

conformity with the experimental test

results of concrete at different

temperatures.

4. The developed tensile stress-strain

relationship for concrete at elevated

temperatures has a linear branch until

reaching the crack stress and after cracking,

the developed relationship for tension at

high temperature is modified by accounting

for the decreasing tensile strength of

concrete. The relationship is uncomplicated

and compatible with the experimental test

results.

5. The available models for compressive

strength at elevated temperatures did not

notice to the aggregate types.

6. Available researches and experimental test

data on tensile strength of concrete at

elevated temperatures are limited.

7. The additional experimental tests are

needed to investigate the significance and

�
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Fig.14. Comparison between the developed tensile stress-strain relationship for concrete (95 MPa) at elevated temperatures

with Felicetti et al. [46] experimental data at 105°C
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role of several parameters of thermal and

mechanical properties of concrete. 
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Notation

: Concrete compressive stress at ambient

temperature

fc'     : Concrete compressive strength at ambient 

temperature

f '28 : Compressive strength at 28 days

fcr : Tensile strength of concrete

fci : Initial compressive stress before heating

fl : Stress at the point of intersection of the two

equations defining the stress strain curve of

concrete

fyT : Yield strength of reinforcing bars at elevated

temperature

T :Concrete compressive stress at elevated

temperature

f 'cT : Concrete compressive stress at elevated

temperature

fcrT : Tensile resistance of concrete at elevated

temperature 

f 'ccT : Compressive strength of confined concrete at 

elevated temperature

f 'iT : Effective lateral confining stress at elevated 

temperature

: Concrete strain at ambient temperature

' : Strain at maximum stress for concrete at ambientc!
c!

c#

c#
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temperature 

u : Ultimate strain for concrete at ambient

temperature

: Strain at the elastic limit in compression

: Cracking strain

: Strain at point of intersection of the two equations

defining the stress strain curve of concrete

: Strain at maximum stress of concrete at

elevated temperature

: Strain at maximum stress of confined concrete

at elevated temperature

: Total displacement, measured over the specified

gage length

t : Displacement corresponding to the tensile

strength

Ec : Initial modulus of elasticity at ambient

temperature

EcrT : Initial modulus of elasticity at elevated

temperature

Ep : Secant modulus at peak stress

Gf : Fracture energy of the concrete in tension

lch : Characteristic length or crack bandwidth

kt : Initial tangent stiffness to the stress-displacement

curve

c : Stiffening parameter

g : Function to account for increase in modulus of

elasticity due to external loads

t : Age (day)

Z  : Slope of the decaying branch of the concrete

stress–strain curve

KhT: Confinement factor at elevated temperature

Ke : Confinement effectiveness coefficient

As : Cross sectional area of transverse reinforcement

ds : Diameter of the transverse reinforcing bars

Sh : Center-to-center spacing of the transverse

reinforcement

: Factor accounting for the initial compressive

stress level

: Ratio of the volume of transverse reinforcement

to the volume of concrete core measured to

outside of the transverse reinforcement

s$

L"

&

&

oTc!

max!
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tu!
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