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1. Introduction

Bearing capacity of foundations has always been one of the

most interesting research subjects in geotechnical engineering

with numerous published papers and reports. Among these,

extensive studies have been made for bearing capacity in two

dimensions for infinitely long strip footing which rest on a

horizontal or inclined slope surface. In this regard, different

methods of analysis are introduced. Randolph et.al [1]

summarized some of the theoretical advances made over the

last few decades in the treatment of bearing capacity of

foundations. 

It seems that 2D theoretical approaches have reached to a

relatively satisfactory level for ordinary loading and soil

conditions. But, real foundations are not infinitely long and

their failure mechanism is certainly three dimensional.

Therefore, developing analytical estimation of 3D bearing

capacity is non-trivial. 

Evaluation of the 3D bearing capacity of shallow

foundations is usually assessed by introducing experimental

and empirical shape factors into the ordinary 2D equations for

the strip footings developed by researchers such as Meyerhof

[2], Terzaghi and Peck [3], Hansen [4], de Beer [5], Vesic [6],

and the others. These empirical shape factors are commonly

based on the test results obtained from works of Golder [7]

and some additional unpublished data. 

Due to differences or even inconsistencies of such proposed

experimental and empirical shape factors, these shape factors

need to be obtained from a realistic analysis. Therefore, three

dimensional problems of bearing capacity still require more

experimental and theoretical research activities.

Shield and Drucker [8] presented a theoretical evaluation of

3D bearing capacity of rectangular foundations on

homogeneous clay (φ = 0) by means of upper and lower bound

solutions. Theoretical analyses of bearing capacity have also

made use of Kötter's equation with a rigid perfectly plastic soil

response assumption (Shield. [9]; Cox et al., [10]). Nakase

[11] used an ordinary limit equilibrium method and assumed

cylindrical sliding surfaces for rectangular footings on

normally consolidated clays, of which strength increases

linearly with depth. Ugai [12] presented more rigorous

solutions for rectangular foundations laid on NC clays by

means of limit analysis, and also improved the admissible

velocity field originally proposed by Shield and Drucker [8],

by including the effect of the footing base roughness. Narita

and Yamaguchi [13], presented a three dimensional analysis of

bearing capacity of rectangular foundations by means of the

method of slices, assuming that sliding surfaces are composed
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of a set of log-spirals with different initial radii in the direction

of the longer axis of the footing base. Michalowski [14]

introduced a 3D analysis of rectangular foundations based on

limit analysis (upper-bound) approach, in which all

mechanism of failure considered in the analysis consisted of

four regions, each characterized by plane deformations. Then,

Michalowski and Dawson [15] compared the results of their

proposed upper bound method with the numerical results of

FLAC3D code. Also, Zhu and Michalowski [16] calculated

shape factors for square and rectangular footings based on the

upper bound method they proposed, and compared them with

finite element analysis results. Salgado et al. [17] calculated

rigorously the bearing capacity of strip, square, circular and

rectangular foundations in clay, based on finite element limit

analysis. 

Among all different methods which investigators have used

in their analysis, limit equilibrium and continuum based

methods such as finite element and finite differences are the

most widely used.

Calculations based on limit equilibrium methods for the

problem of bearing capacity, generally do not satisfy all

equilibrium conditions; therefore, additional assumptions are

required with respect to interslice forces and stresses. Both of

the finite element method and the finite difference method

require initial stress state of the soil, an appropriate

constitutive model for the soil, and proper parameters for the

model.

Cundall and Strack [18] established a Discrete Element

Method (DEM) to study the micromechanical behaviour of

granular materials by modeling assemblies of two dimensional

circular particles.  In this method each particle is considered as

a distinct (discrete) element. The method has been used

extensively to model many theoretical and industrial

applications using the other different shapes of particles such

as polygon (Mirghasemi et al., [19,20]), ellipse (Rothenburg &

Bathurst, [21]), spheres (Cundall, [22]), polyhedral

(Ghaboussi & Barbosa, [23]) and ellipsoid (Qudefel &

Rothenburg, [24]; Ng, [25]). 

The new concept of DEM presented here, falls within the

framework of the limit equilibrium methodology. In two

dimensional state, this method was presented by Chang for

analysis of bearing capacity of foundations [26], slope stability

[27] and retaining walls [28]. Instead of modeling individual

particles, soil mass is treated as a system of blocks connected

together by elasto-plastic Winkler springs. 

This method is somehow similar to the method which Shi

[29] presented for a rock block system called Discontinuous

Deformation Analysis (DDA). The method was developed to

simulate the failure process and study the mechanism of the

rock failure with contact and large displacement in 3D

condition.

Considering the compatibility conditions, the boundary

stresses on the failure surface and the ultimate bearing

capacity of shallow foundations can be obtained. The

computed boundary stresses from this method satisfy

equilibrium conditions and do not exceed the soil strength.

Therefore, additional assumptions are not required with

respect to interslice forces and stresses. As Chang stated [26-

28], the different loading and soil parameters including

weight, surcharge and cohesion, can be simultaneously applied

to find the corresponding critical failure surface which offers

the minimum bearing capacity. For the analysis, only Young's

and shear moduli are additionally required. 

In the original DEM used for granular soils, equations are

explicitly solved by finite difference method, whereas in the

current approach these equations are implicitly solved since

the contact between two adjacent blocks always exists.

By developing the concept proposed by Chang [26-28], a

three dimensional formulation of the discrete element method

is presented in this paper to obtain bearing capacity of

rectangular shallow foundations. Also, several examples and

graphs are provided to demonstrate the applicability of this

method. The computations in this research are carried out

using a DEM code written in MATLAB and called BCAP3D

(Bearing Capacity Analysis Program in 3 Dimensions).

2. Discrete element model

To determine the three dimensional bearing capacity of

rectangular shallow foundations by DEM, it is assumed that

three blocks of the soil mass beneath the footing are going to

slip in order to define the failure mechanism. The soil mass

enclosed in three dimensional space with assumed

failure surfaces, is considered as several discrete blocks

connected with an infinite number of Winkler springs, as

shown in Fig. 1.

Each group of Winkler springs consists of three sets of

springs in different orthogonal directions. One set of springs is

located in the direction normal to the contact surface to

simulate the normal stiffness and the two other sets are placed

within the contact surface, perpendicular to each other, to

simulate the shear resistance (Fig. 2). Therefore, in

comparison with the 2D model, one set of shear spring is

added in the contact surface between two adjacent blocks.

The behavior of the normal and shear springs is assumed to

be Elasto-Plastic. As shown in Fig. 3, the normal springs do

not yield in compression, however in tension, they would yield
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Fig. 2. Winkler spring in 3 dimensional state

� ��������	�
�����

�������	�
�����

�������	�
�����

�

Fig. 1. Connection of adjacent blocks with Winkler springs in 3
dimensional state
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at the tensile capacity.

Also, based on Mohr-Coulomb failure criteria, the shear

springs yield when the shear strength (τp) is reached, as:

(1)

When stresses in the normal or shear springs exceed their

final strength, the springs yield. In order to reduce the stiffness

of the yielded springs, a secant method is applied. Regarding

the stress-strain relationship shown in Fig. 3, the initial normal

stiffness (knormal) alters to reduced secant normal stiffness

(k'normal). With the same concept, the initial shear stiffness

(kshear) is substituted by the reduced secant normal stiffness

(k'shear). The initial values of stiffness in the normal and shear

directions between blocks can be estimated using Young's

modulus (E) and shear modulus (G), respectively [21-23,26].

This subject will be discussed later in the paper. 

3. Failure surface geometry

The model presented here uses some wedges to discretize the

assumed failure surface as shown in Fig. 4. Similar to the

classical two dimensional bearing capacity approach

(Mirghasemi and Majidi, [30]), the failure mechanism

contains an active zone blow the footing (zone I), which is

pushed downward into the soil mass and a passive wedge

(zone III) moves laterally. The transition between downward

movement of the active zone and lateral movement of the

passive zone takes place through the radial shear zone (II). The

shape of the failure surface of zone (II) is assumed to be a

logarithmic spiral. These three zones can be divided into any

arbitrary number of blocks, e.g. N1, N2 and N3, respectively.

The geometry of the failure surface is a function of the footing

width (B) and length (L), the internal friction angle of the

underlying soil (φ) and the six independent angles of α1, α2,

α3, α4, θ1 and θ2. 

The angles θ1 and θ2 as shown in the Fig. 4, determine the

inclination of lateral failure surfaces in the three

dimensional space. The absolute values of θ1 and θ2 are

assumed to be identical ( lθ1l = 1θ2l ) due to the symmetry in

the foundation geometry and loading. As shown in Fig. 5, a

negative or positive value of θ1 and θ2 indicates an inwards or

outwards inclination of the lateral failure surfaces,

respectively. When these angles are zero the lateral failure

surfaces are vertical.

Unlike classical methods, these six angles are not predefined

��� ����� � ��
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Fig. 3. Stress-Strain behaviour of Winkler springs,
(a)- shear springs, (b)- normal springs
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Fig. 4. Aspect of failure surface geometry, (a)- 2D view, (b)- 3D view

Fig. 5. The inclination of lateral failure surfaces in the three dimensional space, (a)- zero value for θ1 and θ2 (vertical), (b)- negative value
(inclined inwards), (c)- positive value (inclined outwards).
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and are found by iteration to obtain the minimum ultimate

bearing capacity. Due to the existence of six independent

angles, a very extensive number of failure surfaces are

examined to determine the critical failure surface which

corresponds to the minimum bearing capacity. Therefore, with

more complex failure surface geometry, the accuracy of the

solution is improved in comparison with simpler failure

surfaces geometry commonly considered in classical limit

equilibrium or limit analysis methods.

4. Three dimensional formulation

To obtain a three dimensional formulation of DEM, it is

assumed that each block is rigid and only relative displacements

of adjacent blocks are taken into consideration. Also in

comparison with relative translation, relative rotation of two

neighboring blocks is small. Therefore, due to the fact that the

two adjacent blocks remain in contact and no separation occurs

at contact surfaces under the relative displacement, the

continuum theorem can be applied to show the discontinuous

deformations in the studied media. 

In Fig. 6-a, consider two blocks A and B, which are

connected together in (x,y,z) space before displacement. After

loading, two contacting blocks are moved and although they

exaggeratedly illustrated as separate in Fig. 6-b, they are still

in contact, having Winkler springs between them.

Let Ui
A and Ui

B represent the translation and rotation of

displacement vector of blocks A and B, respectively

(i=1,2,…,6). These vectors in (x,y,z) space contain six

components, where three elements (U1,U2,U3) represent

translations in (x,y,z) directions and other three elements

(U4,U5,U6) represent rotations around these axis. Let point P

be the center of the interface surface between these two blocks.

The displacement of block B relative to block A at point P is

then expressed as follows: 

(2)

where [ Rpa ] is the matrix joining the centroid of the block A

to point P. If, however the block B is fixed, the values of Ui
b

are taken as zero. The displacement vector on the left side of

Eq. 2 can be transformed from (x,y,z) coordinate to the local

(n,s,t) coordinate, which ni
p is an outward unit vector normal

to the side face of block A at point P, as follows:

(3)

where [T] is an orthogonal transformation matrix

(TT
i j = T-1

i j). 

Due to the relative translations and rotations between two

neighboring blocks, the springs are deformed and the normal

and shear stresses are on the interface surfaces can be

calculated. Therefore, at any point P' on the interface the

springs' deformation in the normal (∆nP') and in shear

directions (∆sP',∆tP') can be obtained by:

(4-a)

(4-b)

(4-c)

where (∆nw, ∆sw, ∆tw) are the relative rotational components

of displacement vector in local coordinates. Also, sP' and tP' are

the distance of point P' from point P on the interface in s and t

directions, respectively. Therefore, the total stress distribution

on the interface surface due to relative displacement can be

divided as:       

(a) Uniform normal stress distribution, due to the relative

translation of the centers of the interface surfaces of two

adjacent blocks in direction of n axis (∆nP).

(b) Triangular normal stress distribution, due to the relative

rotation of two adjacent blocks around s axis ∆sw.tP').

(c) Triangular normal stress distribution, due to the relative

rotation of two adjacent blocks around t axis (∆tw.sP').

(d) Uniform shear stress distribution, due to the relative

translation of two adjacent blocks in the direction of s axis

(∆sP).

(e) Uniform shear stress distribution, due to the relative

translation of two adjacent blocks in the direction of t axis

(∆tP).

(f) Nonuniform shear stress distribution in the direction of s

axis, due to the relative rotation of two adjacent blocks around

n axis  ∆nw.tP').

(g) Nonuniform shear stress distribution in the direction of t

axis, due to the relative rotation of two adjacent blocks around

n axis (∆nw.sP').

To obtain the equivalent forces (Fn,Fs,Ft) and moments

(Mn,Ms,Mt) in point P, these stresses can be integrated on the
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Fig. 6. Displacement of adjacent blocks in 3 dimensional state, (a)- before and (b)- after displacement.
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interface surface, as follows:

(5-a) 

(5-b) 

(5-c) 

(5-d) 

(5-e) 

(5-f) 

Where kn, ks and kt are the stiffness coefficients for a unit

surface area of normal and shear springs in (n,s,t) directions,

respectively.

Since the relative rotation of two adjacent blocks is

considered small, it can be assumed that the spring's

coefficients kn, ks and kt are constant in Eqs. 5. As a result,

similar conditions (elastic or plastic) exist for all springs

located at the same direction across the contact surface.

The integrals of Eqs. 5 can be obtained from ordinary surface

inertial moment equations. Then, Eqs. 5 can be expressed as:

(6)

where [ k ] is the stiffness matrix of the associated surface.

For convenience, the interface forces in the local coordinate

are transformed to the global coordinate by:

(7)

From Eqs. 2, 3, 6 and 7, the forces acting on all (n) sides of

a block should satisfy the force and displacement equilibrium

requirement, given by: 

(8)

where { fa } is the body force vector in centroid of block A. 

In contrast with finite element method, in which the

constraint information is given on nodes, in DEM it is given on

the centers of blocks. Based on Eq. 8, the relationship between

the forces and the displacements for all blocks can be written

as follows:

{f}=[K]{U}                                                                    (9)

where [ K ] is the global stiffness of system and the vectors {

f } and { U } consist of body forces and displacements for all

blocks, respectively. 

In Eq. 9, there are twelve variables for each block; body

forces vector (fa
x,f

a
y,f

a
z,m

a
x,m

a
y,m

a
z) and displacement vector

(ua
x,u

a
y,u

a
z,w

a
x,w

a
y,w

a
z). Body forces are known, thus the 6N

simultaneous equations for a system of N blocks can be solved

for 6N unknown variables. The relative displacement of two

adjacent blocks can be determined by Eq. 2. The normal and

shear forces between blocks can be obtained from Eqs. 3 and

6. Also, the local factor of safety (L.F.S) for each failure

surface, and overall factor of safety (O.F.S) for the whole

failure surface can be evaluated by the ratio of shear strength

force to existing shear force on local and overall failure

surface, respectively from:

(10-a)

(10-b)

where τsi and  τti are the existing shear stresses in the

directions of s and t on the failure surface. Also,  τpi is the shear

strength which can be obtained from Eq. 1. 

5. Bearing Capacity Analysis

In this section an example is presented to explain the

capability of the method to model the progressive failure in the

soil mass under the footings. Also sensitivity analyses are

carried out to investigate the effects of various parameters

employed in the model.

5.1. Progressive failure modeling

Unlike the limit equilibrium methods, the present method can

be used to model progressive failure of a sliding soil mass. In the

analysis, an incremental loading procedure is adopted. In each

step of the calculations, the load is increased while a linear

behaviour is assumed for the Winkler springs. As the load

increases, the induced stresses in springs may exceed the

allowable stresses. When the shear and normal stresses are

beyond the admissible stresses at an interface, the local factor of

safety is set to be 1 for the interface and the iteration process

redistributes the excessive amount of stresses to the neighboring

blocks. The iterative procedure is carried out until the stresses at

all interfaces of blocks are compatible with their deformations

and completely satisfy the stress-displacement relationships.

The Newton-Rophson iterative scheme (Bathe, [31]) is applied

for modeling nonlinearity properties in plastic conditions. In this

iterative scheme, an approximation to the exact stress-strain

curve is made based on the slope at the start of the increment,

but using an iterative procedure, in which the stiffness is

updated at each iteration, the approximation gets refined.

Fig. 7 shows the geometry of the assumed failure mechanism

composed of discrete blocks under a rectangular footing. The

unit weight of soil used for this example is 20 kN/m3, the angle

of internal friction of soil is 30° and the soil cohesion is 30 kPa.

The values of Young's modulus and shear modulus are assumed

to be 3 and 1 MPa, respectively. The footing width and length

are B = 1 m and L = 2 m. The number of blocks in zones I, II

and III are selected as 1, 5 and 1 respectively (Fig. 4). In

classical 2D limit methods [2-4,6], the critical angles related to

the minimum bearing capacity, are often obtained by

assumption or by derivation and usually fixed at (α1 = α2 =π/4

+φ/2), (α3 =π/2) and (α4 =π/2 +φ). Therefore, in this example

the angles α1 to α4 are chosen to be 60, 60, 90 and 120 degrees,

respectively. Also, the angles θ1 and θ2 are assumed zero; it
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means that the lateral failure surfaces are vertical. The results of

computation are summarized in Table 1 and 2 for base (Bi) and

lateral (Li) failure surfaces. As indicated in Table 1, as the load

is incrementally increased, more shear springs along the failure

surfaces yield. The reduction of local factor of safety to 1 at each

interface indicates that all shear springs of the interface are

yielded. As loading increases, the number of plastic interfaces is

also increased and the overall factor of safety is reduced. Finally

at the ultimate bearing load equal to 5177.95 kN, all interface

springs, both in base and lateral surfaces, experience plastic

condition and the overall factor of safety of 1 is resulted. 

5.2. Influence of the number of blocks

As mentioned previously, the soil mass beneath the footing is

divided into several distinct and rigid blocks connected with

Winkler springs. The effect of the number of blocks used for

each failure zone under the footing is investigated and the

results are presented in Table 3. As it can be seen in this table,

the number of blocks at three failure regions (N1, N2 and N3)

vary in all possible combinations of 1, 5 and 10. Hence, the

resultant ultimate bearing capacity is calculated. As it is

expected, the best result which corresponds to the minimum

bearing capacity, is obtained when the number of blocks is 1 in

regions (I) and (III), and is 10 (largest in this series of

modeling) at region (II). Therefore, it can be concluded that

the radial shear zone (II), must be modeled with an adequate

number of blocks to simulate the shear behaviour of this zone.

Also, due to the non-shear behaviour of zones (I) and (III), one

block would be enough to model these regions. 

Fig. 8 describes the influence of the number of blocks in zone

(II) on the resultant bearing capacity, when the number of

blocks in zones (I) and (III) are equal to 1. As shown, by

increasing the number of blocks in zone (II), the ultimate

bearing capacity decreases. However, it seems that by

modeling this region with block quantities higher than 10,

sufficient accuracy is obtained. Thus, in most cases, which will

be presented here later, for obtaining enough accuracy, the

number of blocks in zones (I), (II) and (III) is chosen to be 1,

25 and 1, respectively.

5.3. Influence of the foundation aspect ratio

In Fig. 9 the influence of the foundation aspect ratio (L/B) on

the ultimate bearing capacity in unit area (qUlt.) is shown. As

expected, the ultimate bearing capacity decreases by

increasing the footing aspect ratio. Finally, this value reaches

to its 2D ultimate bearing capacity which is obtained in this

example equal to 1204.43 kPa.
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Fig. 8. Influence of the number of blocks in zone II (N2) on Qult
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Table 1. Progressive failure in shear springs on base failure surfaces
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Table 3. Influence of number of blocks (N1,N2,N3) in the three failure regions (I,II,III)
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Fig. 7. Discrete element mesh for modeling progressive failure



5.4. Effect of Winkler spring constant

As indicated previously, the initial values of stiffness in the

normal and shear directions between blocks can be     estimated

by taken analogous to the values of Young's modulus (E) and

shear modulus (G), respectively. For isotropic elastic materials,

the ratio of (E/G) is given by 2(1+ν), in which (ν) is the

Poission's ratio and varies from 0 to 0.5 for different soils.

Thus, the practical range of (knormal/kshear) is from 2 to 3.

Similar to the 2D model  (Chang, [26]), it is found that the

results of the present method     depend on the Winkler spring

constants ratio (knormal/kshear) rather than their individual values.

In Fig. 10, the influence of the variation of (knormal/kshear) is

described. As the results show, the computed collapsing load is

not significantly affected by variation of (knormal/kshear), in the

practical range of  (E/G) ratio. 

6. Two dimensional bearing capacity coefficients

The two dimensional bearing capacity estimation is generally

based on the superposition method proposed by Terzaghi [32],

in which the contribution of different loading and soil

parameters including self-weight (γ), internal friction angle (φ),

surface surcharge (q) and cohesion (c), are expressed in the form

of non-dimensional bearing capacity coefficients as follows:

qult.=0.5BγNγ+qNq+cNc                                                                        (11)

where Nγ, Nq and Nc are the two dimensional bearing

capacity coefficients (i.e. self- weight, surcharge and cohesion

coefficients).

In classical limit analysis methods, the exact values of

surcharge and cohesion bearing capacity coefficients are

obtained from: 

(12)

(13)

by assumption of (α1=α2=π/4+φ/2), (α3=π/2) and

(α4=π/2+φ) for angles which define the failure surface

geometry in 2D. But, as mentioned previously, there is no

special presumption in determination of the failure surface

angles in present method. 

To compute the cohesion coefficient Nc in DEM, the unit

weight of the soil and the load surcharge were set to be zero and

c = 9.8 kPa. By assuming  γ= 0, c = 0 and q = 9.8 kPa, the Nq

can be calculated. On the other hand, assuming c = 0, q = 0 and

γ = 19.6 kN/m3 would results in the Nγ. The width of footing

(B) and the Winkler spring constant ratio (E / G) were assumed

1 m and 2.7, respectively in all computations. Also, In order to

make the 3D DEM results comparable to the 2D available

solutions, the footing aspect ratio (L/B) was set to 1000.

In Figs. 11 and 12, the values of Nq and Nc obtained by  Eqs.

12 and 13 are compared with the results of DEM which are

obtained with assumption of the above mentioned classical

failure surface angles and so with critical angles found by trial

and error. As it can be seen, the Nq and Nc values obtained

from Eqs. 12 and 13 are almost identical to DEM results which

are obtained with assumption of classical failure surface

angles. However, the critical values of Nq and Nc in DEM are

obviously less than classical exact values.

On the other hand, the values of Nγ obtained from various

methods and the proposed DEM are compared in Fig. 13.

From this comparison, it is concluded that the values of Nγ
obtained by the DEM presented here, are very close to the

results of Vesic [6] method. These differences in various

methods are not surprising. For instance, forφ = 40°, Nγ varies

between 38 to 192 in different 2D methods (Bowles [33]).

7. Three dimensional bearing capacity coefficients

3D Bearing capacity estimation is generally based on the

superposition method proposed by Terzaghi [32] and

expressed in the form of dimensionless bearing capacity

coefficients as follows:
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Fig. 9. Influence of the foundation aspect ratio (L/B) on qult
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Fig. 10. Influence of variation of the Winkler springs stiffness ratio
(knormal / kshear) on Qult
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Fig. 11. Comparison of exact mathematical values of Nq and 
DEM in 2D state
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qult. = 0.5BγN'γ + qN'q + cN'c (14)

where three dimensional bearing capacity coefficients (N'γ,

N'q and N'c) include the related shape factors (sγ, sq, sc) in the

form of:

N'γ=sγ.Nγ (15-a)

N'q=sq.Nq                                                                                                 (15-b)

N'c=sc.Nc   (15-c)

in which Nγ, Nq and Nc are the ultimate bearing capacity

coefficients for a strip footing in 2D. 

In this paper, in order to follow the superposition method, the

bearing capacity coefficients are calculated and presented

here, using DEM. Initially, some comparisons are made with

previous published data, then for a practical range of friction

angles and footing aspect ratios, the bearing capacity

coefficients and related shape factors are provided in several

tables and figures.

7.1. Comparison with other 3D methods

To compare the 3D bearing capacity coefficients resulted

from DEM with other methods, the results of two classic semi-

empirical methods which presented by Meyerhof [2] and

Hansen [4] and  are widely used for the shape factors, and two

latest solutions of 3D bearing capacity of foundations obtained

by slices method (Narita and Yamaguchi, [13]) and an upper-

bound approach of limit analysis (Michalowski,[14]) are

presented in Figs. 14 to 19 for φ= 30º and 40º. As can be

observed, the differences between the methods increase as the

angle of internal friction of the soil increases. 

Like almost all other methods evaluating the foundation

bearing capacity, the result of the present method is highly

dependent on the internal friction of the soil, especially for

amounts of φ greater than 30º. For large internal friction angles

the bearing capacity coefficients and related shape factors are

rapidly increasing when the foundation aspect ratio (L/B)

approaches to 1, whereas for small internal friction angles the

rate of changes is less.

The upper bound method, which was presented by

Michalowski [14], offers much higher values especially for

small foundation aspect ratios in comparison with other

methods. However, at a later point, Michalowski and Dawson

[15] compared these results of kinematic approach of limit

analysis with the numerical results obtained from FLAC3D

code, and indicated that assumptions made in 3D limit analysis

provide significant restrictions on the velocity field.

Consequently, they concluded that numerical results based on

the FLAC3D code provide significantly lower and therefore
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Fig. 14. Comparison of N´γ obtained from various methods
for  φ= 30º
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Fig. 15. Comparison of N´γ obtained from various methods for 
φ= 40º
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Fig. 16. Comparison of N´q obtained from various methods
for  φ= 30º
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Fig. 12. Comparison of exact mathematical values of Nc and DEM
in 2D state
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Fig. 13. Comparison of Nγ obtained from conventional methods and
DEM in 2D state
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more accurate limit loads. 

The result of Narita & Yamaguchi method [13] is different

from other classical methods. Due to assumption of a rather

simple model for failure surfaces geometry, the elimination of

the forces acting on the lateral surfaces and some other

assumptions made to satisfy the equilibrium equations, the

accuracy of the solution is not satisfactory. 

The results of DEM are more in accordance with

classical semi-empirical results such as Meyerhof [2] and

Hansen [4].

7.2. Superposition method in 3D bearing capacity

The validation of superposition method in the calculation of

3D bearing capacity is examined in Fig. 20. The values

obtained using DEM with assumption of Terzaghi's

superposition method (Eq. 15) compared with the results of

analyses in which the underneath soil possesses different

loadings and soil parameters including weight, surcharge and

cohesion for φ=10 to 40 degrees. The figure shows that the

superposition assumption offers conservative results except in

small L/B ratios and large amounts of φ. For φ smaller than

40°, differences between these two approaches do not exceed

about 10 percents. Therefore, assuming the Terzaghi type

formula of bearing capacity still holds good results for 3D

problems.

7.3. Three dimensional bearing capacity coefficients and
shape factors

In Tables 4 to 6, the Values of 3D bearing capacity

coefficients for various internal friction angles and footing

aspect ratios (L/B), obtained by DEM are presented. Also,

the values of related shape factors (Eqs. 12), obtained from

these tables, are presented in Figs. 21 to 23.

8. Summary and conclusions

In this research, analyses based on Discrete Element Method

(DEM) are carried out for determining three dimensional

bearing capacity of shallow foundations. The soil mass in the

assumed three dimensional failure surface is considered as

several discrete blocks connected with Winkler springs. Using

an iterative method, the six angles defining the failure surface

geometry are independently varied in order to obtain the most

critical failure mechanism corresponding to the minimum

bearing capacity. The derivation of the three dimensional

DEM formulation is explained and several examples

expressing the progressive failure and sensitivity analysis are

provided. The results are compared with other 2D and 3D
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Fig. 17. Comparison of N´q obtained from various methods
for  φ= 40º
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Fig. 18. Comparison of N´c obtained from various methods
for  φ= 30º
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Fig. 19. Comparison of N´c obtained from various methods
for  φ= 40º
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Fig. 20. Investigation of superposition method on bearing capacity
in 3 dimensional conditions, 

(a)- for φ= 10° and 20°, (b)- for φ= 30° and 40°
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bearing capacity analysis. Also the DEM bearing capacity

coefficients and related shape factors for various internal

friction angles and footing aspect ratios are presented.

The results obtained from the present study can be

summarized as follows:

1. DEM can be used to monitor the progressive failure of a

sliding soil mass.

2. In DEM, the computed bearing capacity load is not

significantly influenced by the ratio of tangential and 

shear springs (knormal / kshear) in the practical range of 

(E/G) ratio.

3. The result of DEM analysis with classical failure  surface

geometry is equal to the classic 2D limit analysis.
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Fig. 21. Self-weight shape factors (sγ ) for various φ and L/B   
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Fig. 22. Surcharge shape factors (sq) for various f and L/B
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Fig. 23. Cohesion shape factors (sc) for various f and L/B
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Table 4. Values of N'γ for various angles of internal friction and footing aspect ratios
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Table 5. Values of N'q for various angles of internal friction and footing aspect ratios
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Table 6. Values of N'c for various angles of internal friction and footing aspect ratios
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However, when the critical surface geometry is found

by variation of angles describing the geometry

(trial and error), less values for bearing capacity coefficients

are obtained.

4. Just like other methods, the bearing capacity coefficients

obtained by DEM are highly dependent on the internal friction

of the soil, especially for   values greater than 30º.

5. For large internal friction angles the bearing capacity

coefficients or related shape factors are rapidly increasing

when the foundation aspect ratio (L/B) approaches to 1,

whereas for small internal friction angles the rate of changes is

smaller.

6. The present method results are more in accordance with

classical semi-empirical results proposed by earlier

researchers such as Meyerhof and Hansen. 

7. Self-weight shape factors (sγ) decreases with increase of

L/B ratio. 

8. Surcharge (sq) and cohesion (sc) shape factors increase

with increasing φ and decrease with increasing L/B ratio.

9. The superposition assumption offers conservative results

except in small L/B ratio and large φ. The differences

between two approaches (with and without superposition

assumption) do not exceed about 10 percents in φ amounts

smaller than 40°.

References

Randolph, M.F., Jamiolkowski, M,B. and Zdravkovic, L., 2004,
"Load carrying capacity of foundations." Advances in
geotechnical Engineering: The Skempton Conference, Thomas
Telford, London.
Meyerhof, G. G., 1963, "Some Recent Research on the Bearing
Capacity of Foundations." In: Canadian Geotech. J., Vol. 1, No.
1, pp. 16-26.
Terzaghi, K. and Peck, R. B., 1967, "Soils Mechanics in
Engineering Practice," J.Wiley, New York.
Hansen, J.B., 1970, "A Revised and Extended Formula for
Bearing Capacity." Danish Geotech. Inst. Bulletin, No. 28,
Denmark.
De Beer, E.E., 1970, "Experimental determination of shape
factors and the bearing capacity factors of sands,"
Géotechnique, Vol. 20, No. 4, pp.387-411.
Vesic, A.S., 1973, "Analysis of Ultimate Loads of Shallow
Foundations." J. of Soil Mech. and Fndn Div. ASCE; Vol. 99,
No. SM1, pp.45-73.
Golder, H.Q., 1941, "The ultimate bearing pressure of
rectangular footings." J. Instn Civ. Engrs., Vol. 17, No. 2,
pp.161-174. 
Shield, R.T. and Drucker, D.C., 1953, "The application of limit
analysis to punch-indentation problems." J. of Appl. Mech.,
ASCE, pp.453-460. 
Shield, R.T., 1955, "On the plastic flow of metals under
conditions of axial symmetry." Proc. Roy. Soc. of London A,
233, pp. 267-287. 
Cox, A.D., Eason, G. and Hopkins, H.G., 1961, "Axially
symmetric plastic deformations in soils." Phil. Trans. Roy. Soc.
of London A,Vol. 254, No, 1036, pp. 1-45. 
Nakase, A., 1981, "Bearing capacity of rectangular footings on
clays of strength increasing linearly with depth." Soils and
Foundations, Vol. 21, No. 4, pp. 101-108.
Ugai, K., 1985, "Bearing capacity of square and rectangular
footings on nonhomogeneous clays." J. of JSSMFE, Vol. 25, o.

4, pp. 179-185. 
Narita, K., Yamaguchi, H., 1992, "Three-dimensional bearing
capacity analysis of foundations by use of a method of slices."
Soils and Foundations, Vol. 32, No. 4, pp. 143-155.
Michalowski, R.L., 2001, "Upper-bound load estimates on
square and rectangular footings." Géotechnique, Vol. 51, No. 9,
pp.787-798.
Michalowski, R.L. and Dawson, E.M., 2002, "Three-
dimensional analysis of limit loads on Mohr-Coulomb soil."
Fndn of Civ. and Inv. Eng., No. 1, pp. 137-147.
Zhu, M. and Michalowski, R.L., 2005, "Shape Factors for
Limit Loads on Square and Rectangular footings." J. of
Geotech. and Geoenv. Eng. ASCE, Vol. 131, No. 2, pp. 223-
231.
Salgado, R., Lyamin, A.V., Sloan, S.W. and Yu, H.S., 2004,
"Two- and three-dimensional bearing capacity of foundations
in clay." Géotechniqu, Vol. 54, No. 5, pp. 297-306.
Cundall, P.A. and Strack, O.D.L., 1979, "A discrete numerical
model for granular assemblies." Géotechnique, Vol. 29, No. 1,
pp. 47-56.
Mirghasemi, A.A., Rothenburg. L. and Matyas, E.L., 1997,
"Numerical simulations of assemblies of two-dimensional
polygon-shaped particles and effects of confining pressure on
shear strength." Soils and Foundations, Vol. 37, No. 3, pp. 43-
52.
Mirghasemi, A.A., Rothenburg, L. and Matyas, E.L., 2002,
"Influence of particle shape on engineering properties of
assemblies of two-dimensional polygon-shaped particles."
Géotechnique, Vol. 52, No. 3, pp. 209-217.
Rothenberg, L., Bathurst, R.J., 1992, "Micromechanical
features of granular assemblies with planner elliptical
particles." Géotechnique, Vol. 42, No. 1, pp. 79-95.
Cundall, P.A., 1988, "Computer Simulations of Dense
Sphere Assemblies." In: M. Satake, J.T. Jekins, (ed.),
Micromechanics of Granular Materials, pp. 113-123,
Amsterdam, Netherland.
Ghaboussi, J. and Barbosa, R., 1990, "Three-dimensional
discrete element method for granular materials." Int. J. for
Numerical and Analytical Methods in Geomechanics, Vol. 14,
pp. 451-472.
Qudefel, H. and Rothenburg, L., 1999, "Algorithm for
detecting inter-ellipsoid contacts." Comput. and Geotech. Vol.
24, pp. 245-263. 
Ng, T.T., 2004, "Shear strength of assemblies of
ellipsoidal particles." Géotechnique, Vol. 54, No. 10, pp. 659-
669.
Chang, C.S., 1991, "Discrete element method for bearing
capacity analysis." Comput. and Geotech., Vol. 12, pp. 273-
288.
Chang, C.S., 1992, "Discrete element method for slope
stability analysis." J. of Geotech.  Engng., Vol. 118, No. 12,
pp.1889-1905.
Chang, C.S., 1994, "Discrete element analysis for active and
passive pressure distribution on retaining wall." Compu. and
Geotech., Vol. 16, pp. 291-310. 
Shi, G.H., 2001, "Three dimensional discontinuous
deformation analysis." Proc. of the 38th US Rock Mechanics
Symposium, Washington D.C., pp. 1421-1428.
Mirghasemi, A.A. and Majidi, A.R., 2002, "Static and pseudo-
static bearing capacity analysis of shallow foundations by
discrete element method." Proc. of 5th European Conf. of
Num. Meth. in Geotech. Engng, Paris, pp. 337-342.
Bathe, K.J., 1982, "Finite element procedures in engineering
analysis." Prentice-Hill, Englewood Cliffs, New Jersey.
Terzaghi, K., 1943, "Theoretical soil mechanics." J. Wiley,
New York.
Bowles, J.E., 1996, "Foundation analysis and design." 5th
edition, McGraw-Hill, New York.

292 International Journal of Civil Engineering, Vol. 9, No. 4, December 2011

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]


