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1. Introduction

Runoff is the base component of water resources management.

Water resources planning and management policies are

developed by projection of runoff and demand variation

schemes in a specific time horizon. In other words, long term

runoff simulation provides an opportunity for decision makers

and managers to develop the appropriate action plans to deal

with extreme situations. Runoff has been widely applied for

hydrologic drought analysis as well as flood simulation [1-3].

Numbers of empirical and theoretical methods have been

developed for runoff simulation and prediction. The precision

of the predicted values plays an important role in developing

the appropriate plans in contingency situations such as

droughts. Mathematical methods as well as ANN(Artificial

Neural Network) have been widely applied in the modeling of

hydrological processes, especially in recent decades.

Researchers such as Coulibaly et al. have presented interesting

applications of these models in hydrology although the need

of long time series for the training of these models has limited

their application in long term predictions [4]. Karamouz and

Araghynejad have used the ANN model for hydrological

modeling in integration with Fuzzy theory for long term

prediction of Zayandeh-Rood river discharge [5]. Misaghi et

al. used ANN to predict the tidal level fluctuations, which is

an important parameter in maritime areas. A time lagged

recurrent network (TLRN) was used to train the ANN model.

Different model structures were used and compared with each

other. In addition, an ARMA model was used to simulate time

series data to compare the results with the ANN forecasts.

Results proved that ANN can be used effectively in this field

and satisfactory accuracy was found for the two examples [6].

Dastorani and Wright used ANN to optimize the results

obtained from a hydrodynamic model of river flow prediction.

Using ANN in this way, the error produced by the

hydrodynamic model was predicted and thereby, the results of

the model were improved [7].

Due to low resolution of GCMs (General Circulation

Models) outputs, some downscaling techniques have emerged
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as means to obtain local-scale weather variables from

regional-scale atmospheric predictor variables. Harpham and

Wilby predicted the precipitation for different zones of

England using different downscaling models such as SDSM

(Statistical Downscaling Model) [8], radial neural networks

(neural networks with kernel based functions) and multi layer

perceptron neural networks [9]. The results of their

investigation show that all of these models are capable of

predicting precipitation in different regions, however their

capabilities are different depending on the special

characteristics of each region. MassahBavani used Kriging

and the inverse weighting method for downscaling

precipitation and temperature of the Zayandeh-rud basin in

Iran. His results indicated that both of these methods are

capable of downscaling precipitation and temperature [10].

Zahabiyoun downscaled GCM outputs, using regressions

between atmospheric circulation indices (ACIs) and rainfall

statistics. The relationships then used to predict the rainfall

statistics for future conditions using GCM outputs [11].

A stochastic weather generator can however serve as a

computationally inexpensive tool to produce multiple-year

climate change scenarios at the daily time scale which

incorporate changes in both mean climate and in climate

variability [12]. LARS-WG(Long Ashton Research Station-

Weather Generator) is a stochastic weather generator which

can be used for the simulation of weather data at a single site,

under both current and future climate conditions [13, 14 and

15]. These weather data are in the form of daily time-series for

climate variables, namely, precipitation (mm), maximum and

minimum temperature (°C), and solar radiation. 

As runoff is the basic component of water resources

management practices, many attempts has been made for

runoff prediction.SeyedGhasemi et al. assessed climate

change, by using GCM outputs as the input to a rainfall-runoff

model named SWAT (Soil and Water Assessment Tool), in

order to model the Zayandeh-Rud river streamflow[16].In this

study, the performance of IHACRES (Identification of unit

Hydrographs And Component flows from Rainfall,

Evaporation and Streamflow data)and ANN models in runoff

simulation in the Ghasre-Ghand region in the Kajoo river

basin, located in the south-western part of Iran, are compared.

The most common hydrological drought index called Surface

Water Supply Index (SWSI) [17] has been used in this study

for evaluation of performance of the models. IHACRES model

uses daily rainfall data for runoff simulation. Rainfall on a

regional scale is simulated using GCM data by SDSM and

LARS-WG models. For runoff simulation using ANNs, the

predictors are selected among large scale climatic signals

including SLP(Sea Level Pressure), SST (Sea Surface

Temperature) and DSLP, that are effective on the rainfall

variations in the study region. Two types of ANNs called

MLP(Multi-Layered Perceptron) and ELMAN are considered

in this study. 

In the following section a brief introduction on IHACRES,

downscaling and ANN models are given. Then the study area

is introduced and the results of different models in runoff

simulation and determining the water resources state are

compared and discussed. Finally a summary and conclusion is

given. 

2.Methodology

The methodology of this paper is given in Figure 1. In this

paper, two types of models named IHACRES and ANN, are

used for long-lead runoff simulation and their performances

are compared. For using the IHACRES model, first, the

precipitation is simulated using the GCM output data, through

two downscaling models called SDSM and LARS-WG. To

employ ANN type models, effective large scale climatic

signals on runoff variations are identified through statistical

analysis and then used as model input for runoff prediction.

The considered ANN models are MLP and ELMAN. 

Finally the results of developed runoff prediction models

(ELMAN, MLP and IHACRES) are compared. Based on the

obtained results, SWSI time series are calculated in order to

determine the water resources state of the study area in the

future. The flow chart of methodology is shown in Figure

1.For consistency of rainfall scenario predictions using GCM

data, both present as well as future predictions of GCM data

should be employed for generating runoff values. Having

employed the calibrated rainfall-runoff model, both present

and future runoff values are simulated and then compared for

future projections. 

2.1. IHACRES Model

Development of mathematical models, relating the

regional precipitation to the runoff, has been a major focus

of surface water hydrology for many decades. There are

different hydrological models used for rainfall- runoff

modeling with different characteristics and limitations.

TheIHACRESmodel is developed by Jakeman and

Hornberger [18]. This model requires limited input data

including basin size (m2), a time series of rainfall,

streamflow data for model calibration and a surrogate

variable representing evaporation. In this study the monthly

mean of air temperature is used as a representative of

evaporation. According to Figure 2, first rainfall rk is

converted into effective rainfall uk using a non-linear loss

module. The underlying conceptualization of this module, in

converting rainfall to effective rainfall, is that the basin

wetness varies with recent rainfall and temperature.

uk=sk *rk (1)

where sk (basin wetness index) is computed at each time step

k on the basis of recent rainfall and temperature as follows:

(2)

(3)

R is the reference temperature and C is determined 

based on the mass balance between effective rainfall and

runoff in the calibration period. Two major parameters in this

model are tw and f. Parameter tw (the river basin drying time

constant) is the value of tw (tk)  at a reference temperature tk
that controls the rate in which the basin wetness index (sk)
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decays in the absence of rainfall. Parameter f (the

temperature modulation factor) controls the sensitivity of tw
(tk) to temperature. In the second module a linear unit

hydrograph (UH) module converts effective rainfall to

streamflow xk. The linear module allows the application of

the well-known unit hydrograph theory which 

conceptualizes the river basin as a configuration of linear

storages acting in series and/or parallel. The configuration of

linear storage in the UH module which is allowed in

IHACRES includes a single storage or two storage units, in

series or parallel.

The optimal pair of (tw ,f) are identified by trial and error for

a given configuration of simple UH's and a given value of the

pure time delay between rainfall and runoff occurrence. Then

the model automatically estimates the relevant parameters for

a subsequent simulation.

Two indices of coefficient of determination, D, and

percentage average relative parameter error (ARPE%) are

used to determine the simulation error when calibrating

IHACRES. High D and a low ARPE% are desirable. These

parameters are estimated as follows[19]: 

(4)

(5)

where s denotes standard deviation, and x and y
denote model residuals and observed runoff, respectively. 

The parameters of Equation 5 are calculated using Equations 6

to 9, in which b and a are the unit hydrograph parameters, and

s and q stand for slow and quick unit hydrographs,

respectively.

b0= b0 
(q) +b0

(s) (6)
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(q) a1 
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(q) (7)
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Fig. 1 The proposed methodology for runoff simulation using downscaling and ANN models

 

 
Fig. 2 The structure of the IHACRES rainfall-runoff model [18].



2-2. Downscaling Method

The input rainfall data of IHACRES model are developed

using two models called SDSM and LARS-WG. The most

important feature of these models is the capability of

generating the ensemble data which can be used for evaluation

of future risk of extreme events. These models are briefly

introduced in the following subsections.

2.2.1. SDSM
In situations where low–cost, rapid assessments of localized

climate change impacts are required, statistical downscaling

serves as an effective tool. During downscaling using SDSM,

a multiple linear regression model is developed between

selected large-scale predictors and a local predictand such as

temperature or precipitation. The parameters of the regression

equation are estimated using the efficient dual simplex

algorithm. Large-scale relevant predictors are selected using

correlation analysis, partial correlation analysis and scatter

plots considering physical sensitivity between selected

predictors and the predictand in the region.

For precipitation downscaling, the predictors describing

atmospheric circulation such as thickness (different

atmospheric layers), different indices of velocity such as

vorticity, zonal velocity and moisture content such as specific

and relative humidity, in different altitudes, are preferred. 

The utilization of SDSM includes five distinct tasks: (1)

preliminary screening of potential downscaling predictors; (2)

assembly and calibration of SDSM; (3) synthesis of 

ensembles of present weather data using observed predictor

variables; (4) generation of ensembles of future weather data

using GCM derived predictor variables; (5) diagnostic

testing/analysis of the observed data and climate change

scenarios.

2.2.2. LARS-WG
LARS-WG model is developed based on the series weather

generator described in Racsko et al. [13]. It utilizes semi-

empirical distributions for the lengths of wet and dry day

series, daily precipitation and daily solar radiation. The semi-

empirical distribution Emp= {a0, ai; hi, i=1,...,10} is a

histogram with ten intervals, [ai-1, ai), where ai-1<ai, and hi
denotes the number of events from the observed data in the ith

interval. Random values from the semi-empirical distributions

are chosen by first selecting one of the intervals (using the

proportion of events in each interval as the selection

probability) and then selecting a value within that interval

from the uniform distribution. Such a distribution is flexible

and can approximate a wide variety of shapes by adjusting the

intervals [ai-1, ai). 

The intervals [ai-1, ai) are chosen based on the expected

properties of the weather variables. For the lengths of dry and

wet series and for precipitation, the intervals [ai-1, ai) size

gradually increases with the increasing of i. This choice of

interval structure prevents a very coarse resolution from being

used for the small values.

The simulation of precipitation occurrence is modeled as

alternate wet and dry series, where a wet day is defined to be

a day with precipitation. The length of each series is chosen

randomly from the wet or dry semi-empirical distribution for

the month in which the series starts. In determining the

distributions, observed series are also allocated to the month in

which they start. For a wet day, the precipitation value is

generated from the semi-empirical precipitation distribution

for the particular month independent of the length of the wet

series or the amount of precipitation on previous days.

Therefore, in LARS-WG, rainfall modeling is a two step

process like the SDSM model conditioned on wet and dry-

days. 

In LARS-WG downscaling unlike SDSM, large-scale

atmospheric variables are not directly used in the model,

rather, based on the relative monthly changes in mean daily

precipitation amount and daily wet and dry series duration

between current and future periods predicted by a GCM, local

station climate variables are adjusted proportionately to

represent climate change. 

2.3. Artificial Neural Network

The second type of models for forecasting runoff in this

study is the ANN. ANNs are commonly used for estimation of

linear or nonlinear relations when ordinal mathematical

relations can not be explored. These networks are trained with

available data to simulate or predict future situations. 

ANNs have been used in different fields of water engineering

as well as rainfall and runoff simulation and prediction.

Different models of ANNs are classified into two main 

groups named static and dynamic models. Static models only

consider inputs of each time step but in dynamical groups the

effects of previous inputs of the model are also considered. In

this study two ANN models are employed such as MLP and

ELMAN as static and dynamic models, respectively. For

rainfall prediction using ANN the following steps are

considered:

• Determining the appropriate climate signals with strong

enough relations with runoff variations in the study area. In

this study, these signals are selected based on Karamouz [20].

• Training of models with different structures and

determining the optimal structure for runoff simulation. The

architecture of an ANN is defined based on the number of

hidden layers, the transient function and the number of

neurons in each layer. Each of these parameters plays an

important role in ANN performance.

• Calibrating and validating the model

• Simulating the future runoff

2.4. SWSI-index

For evaluation of hydrological droughts, the SWSI is

commonly used. The framework of adjusted SWSI-index

developed by Garen, [21] is as follows: 

(10)

where,  p1 is the cumulative probability of exceedance of

runoff in month t in percent. The state of water resources in

each month is determined based on the classified values of

SWSI as it is given in Table 1.
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2.5. Wilcoxon signed rank test 

For constructing a hypothesis test for equality of means of

observed and downscaled data (difference of two population

means), the Wilcoxon signed rank method suggested by Sajjad

Khan et al. [22] is used in this study. The detailed description of

the theory of Wilcoxon signed rank test is given in Conover [23]

and Neter et al. [24]. When it can be assumed that the population

of differences is symmetrical as it is usually true in experimental

settings, the Wilcoxn signed rank test is powerful for making

inferences about the population median differences (hD). Given

the approximate normality of sum the signed ranks (T), the

alternatives for construction of the decision rule are as follows:

H0 (null hypothesis) : hD= 0
H1 : hDK0 (11)

The appropriate decision rule to control the a risk in

application of the test is calculated as follows:

if   A1 OT OA2 , conclude H0

if   T<A1 or T >A2 , conclude H1                                                     (12)

whhere: 

where z(j) is the (j) percentile of the standard normal

distribution and n is the sample size. MATLAB 7.0 software

was used to perform this test. 

2.6. Modified Levene’s test

Modified Levene’s test suggested by Brown and Forsythe

[25] is used in this study to test the equality of variances of

downscaled and observed data. Levene’s test is used when the

data come from continuous, but not necessarily normal

distributions. In this method, the distances of the observations

from their sample median are calculated. The Levene test is

defined as: 

H0 :    s1 =s2 =...= sk
Ha :    si Ksj forat leastonepair(i,j)                                          (13)

Given a variable Y with sample of size N divided into k

subgroups, where Ni is the sample size of the ith subgroup and

si denotes the standard deviation of the ith subgroup, the

Levene test statistic is defined as: 

(14)

and

(15)

where Yij is the value of the jth sample from the ith
group, Ỳi0 is the mean of all Zij ,`Z00 is the mean of all Zij
and`Zi0 is the mean of the Zij for group i which are calculated

as follows:

(16)

(17)

MINITAB 13.0 is used to perform Levene’s test.

3. Study Area

The Kajoo watershed is located in the southeastern part of

Iran. It is between 60◦19 and 61◦20 longitude and 25◦30 and

26◦48 latitude. Kajooriver is the main river of this watershed

which is located in the south-eastern part of Iran close to

Pakistan border (Figure 3).The area of this watershed is about

5511 km2 and the mean annual precipitation on this watershed

is about 218 millimeters. The 5 monthly precipitation from

December to March is about 75% of annual precipitation. In

general, the systems, which mainly affect the climate of Iran,

can be categorized as Siberian high pressure center, Azure

high pressure center, Mediterranean low pressure center or

Mediterranean cyclones, and Sudanese low pressure center.

These strong signals are supplemented but more scattered

signals initiated at the Bay of Bengal, Indian ocean, Arabian

Sea and Oman Sea which are partially responsible for rainfalls

in the southeastern part of Iran. 

There is a meteorological station, called “Ghasreghand and a

hydrometric station named “Chandokan”, upstream of the

Zirdan dam. The situations of these stations are presented in

Table 2. Zirdan reservoir is located in the middle of the

Kajooriver. The initial height of the dam was considered to be

53 m and the height of the spillway was about 43m. The design

discharge of the spillway is about 9634 m3/s. The reservoir

storage at the crust elevation is about 433 MCM and at the

spillway elevation is about 207MCM.

The rainfall and runoff data from year 1971 to year 2004 

are used in this study. Due to the closeness of the 

Ghasreghand station to the hydrometric station, the 

rainfall data of this station has been used for runoff

Simulation. The GCM outputs for NCEP/NCAR reanalysis

that are necessary for climate change impact studies are

available at: http://www.cics.uvic.ca/scenarios. 

Also in this study, during LARS-WG downscaling, 40 years

(1961–2000) of observed weather data (daily precipitation,

daily maximum and minimum temperature) obtained from
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Table 1 Determination of the hydrological state regarding SWSI
classes

SWSI value Hydrological state 
+3.0 < SWSI < +4.2 High wetness
+2.0 < SWSI < +3.0 Moderate wetness
+1.0 < SWSI < +2.0 Low wetness
-1.0 < SWSI < +1.0 Almost normal wetness 
-2.0 < SWSI < -1.0 Low drought
-3.0 < SWSI < -2.0 Moderate drought
-4.2 < SWSI < -3.0 Severe drought 



Iranian meteorological organization are used to determine

statistical parameters of the region. These statistical

characteristics are used to generate synthetic data for 15 years

during validation of the model. The statistical characteristics

of the observed and synthetic weather data are analyzed to

determine if there are any statistically significant differences

using t-test, F-test and Chi-squared test. After having

satisfactory test results, the parameter files derived from the

observed weather data during the model calibration process

were used to generate a number of ensembles of synthetic

weather data for the time period of 1961–2000. 

4. Results 

4.1. Rainfall simulation 

Karamouz et al. [26] used SDSM for daily rainfall simulation

in the study area and determined relative humidity at 850 hPa

height, near surface specific humidity and near surface relative

humidity, as effective climate variables on rainfall variations.

In this study, another downscaling model called LARS-WG is

used for rainfall simulation. In this case the IHACRES model

hasbeen used for transforming simulated rainfall torunoff.

To better investigate the performance of the rainfall

downscaling models, error tolerance ranges are defined as

percentage of simulation error, which is calculated as:

(18)

where obsi and prei stand for observed and simulated rainfall,

respectively. The percentages of simulated rainfall found in

defined error tolerance ranges are calculated and summarized

in Table 3 for the selected models. 

As can be seen in Table 3, the performance of the SDSM

model is much better than the LARS-WG. This is because of

considering local signals in the SDSM model that are effective

in local rainfall variations. The LARS-WG model has

overestimated the amount of rainfall as shown in Figure 4. In

this study the simulated rainfall by SDSM is used for rainfall-

as input of rainfall-runoff models such as IHACRES. 

4.2. Runoff simulation using IHACRES model

In this study, after calibration of IHACRES model, values of

1.2, 7 and 0 are estimated for parameters f, τw and δ,

respectively. A single hydrograph has been determined as the

best model that presents the system for conversion of rainfall

to runoff in the study region.

The selection of the appropriate calibration period is

important in achieving desirable simulation results of basin

runoff using the IHACRES model. Runoff data in Chandokan

station from 1982 to 1986 have been used for model

i
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preobs
Error

−
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Fig. 3 The location of the Kajoo watershed on Iran map

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Station latitude longitude Height(m)

Chandokan 26-10 60-33 350
Ghasreghand 26-12 60-34 382

models Percentage of predictions with error (%) less than 
<10 <20 <30 

LARS-WG 65 92 91 
�SDSM 75 100 100 

 

Table 2 Characteristics of Chandokanhydrometeric and Ghasre-
Ghandrain gauge

Table 3 Error tolerances for SDSM and LARS-WG models
(Percentage of occurrence)



calibration and the remaining 4 years of data from 1987 to 1990

have been used for model validation. The model in calibration

hasoverestimated the maximum runoff and underestimated the

minimum runoff. The simulated and observed monthly runoff

are compared in Figure 5 for validation period. The model

behavior in the validation period is significantly different and

there is usually a lag of about one month between maximum

simulated and observed peak runoff. Simulation error has been

estimated using MAE (Mean Absolute Error) and RMSE (Root

Mean Square Error) indices and results are shown in Table 4.

These indices are quantified as follows:

(19)

(20)

where n denotes the number of data, and X t
0 and X t

p
correspond to the observed and simulated runoff at time t,
respectively. A value equal to zero corresponds to a perfect

match of simulated runoff to the observed data.

Having validated the model, runoff values for three years

from 1991 to 1999 has been estimated using downscaled

rainfall data by SDSM (Figures 6). 

4.3. Results of runoff simulation using ANN

Four effective climate signals on runoffvariations of the

study region are considered for runoff simulation using ANN

models [20 and 27]. Four combinations of predictors

considered for ANN models developmentsare as follows:

• Comb 1: the DSLP between Greenland and Azors, DSLP

between east and west of the Mediterranean Sea.

• Comb 2: the SLP of the Black sea in addition to signals

considered in scenario 1

• Comb 3: considered signals in scenario 1 with a total runoff

volume of last year in the period of December-April 

• Comb 4: the runoff volume in the period of December-April of

last year in addition to signals considered in the second scenario. 

The effective climatic signals are determined based on their

correlations with runoff variations in the study region. Due to

high correlation of identified DSLP signals with runoff, in the

base scenario, these signals are considered.For other scenarios,

some surrogate variables, which also have a considerable

correlation with runoff, are added to model inputs.

ANN models with different structures were trained

considering these four scenarios as model inputs. The

performances of models are compared based on RMSE and

MAE indicators of error to select the best model. Results of the

total 5 month runoff simulations using ANN models are

presented in Figure 7. ELMAN performance in simulation of

maximum events is better than MLP and in low flow periods

the performance of MLP is better. According to Table 5, error

indicators are a little high but, as it can be seen in Figure 7

models have been successful in the simulation of runoff

variation.
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Fig. 4 Comparing downscaling results using SDSM and 
LARS-WG Models
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Table 4 Prediction errors in calibration and validation periods

Fig. 5 Comparison of simulated and observed runoff values in the
validation period
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Fig. 6 Comparison of 5 monthly mean observed and predicted
runoff based on IHACRES results for the years of 1991-1999
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 MLP (m3/s) ELMAN (m3/s) 
RMSE 7.7 6.8 
MAE 5.4 5.2 

 

Table 5 Errors of the best trained ANN models



4.4. Comparison of different models results 

The results of 5 monthly runoff simulation obtained using

the downscaling method and the ANN model have been

compared with observed values 1991 to 1999 in Figure 8. As

can be seen in this figure, IHACRES results are over

estimated. The estimated percentage error in dry years is

more than wet days and exceeds about 95% in 1992, though

the average over-estimated percentage error is 23%. The

simulated values of ANN models fluctuate around observed

values, and most of the time they are less than observed

values. The averages of absolute percentage of errors are

23.2 and 42.8 for MLP and ELMAN models, respectively.

So, that for decision making about floods, IHACRES gives

more reliable results, but in drought management studies the

ANN models are more confident. In some years ANN

calculates simulated flow about 30% less than the observed

values. This may result in implementing high risk mitigation

programs with high costs that are not logical choices. The

percentage of simulation with absolute errors of less than 10,

20 and 30% in considered models are presented in Table 6.

This table shows that by increasing the simulation error the

MLP and IHACRES model performance become more

similar but when more accurate results are necessary, the

IHACRES results are more accurate than MLP.The ELMAN

results in all situations are less accurate than the other

models. The only exceptionis in predictions with error less

than 10% in comparis on with MLP, which in this case is two

times better.

For evaluation of the applicability of the runoff simulations

obtained by different models, SWSI series are calculated.

The SWSI is used for determination of wetness situation in

each year and developing the water resources operation

policies. The results of Wilcoxon rank sum and Leven’s tests

for preservation of mean and variance in simulated data are

given in Table 7. As can be seen, the results are significant in

the 95% confidence level. Therefore the results are

acceptable and can be used for further analysis. The SWSI

results are compared in Table 8. As it can be seen, the results

of the IHACRES model are more matched with the observed

values. 

4. Summary and Conclusion

Long lead runoff simulation plays an important role in

water resources management and operation. It has been

demonstrated that, large scale climate signals can be used

for long lead runoff simulation. Many methods have been

developed for utilizing climate signals for prediction of

runoff in different time scales. One of the commonly used

models in this field is the ANN model application. Also in

recent years downscaling models have been developed to

simulate the amount of rainfall in regional scales and

smaller time steps, than those developed by GCM. The

result of SDSM is better than LARS-WG in this study. The

predicted rainfall can be used as the input of the IHACRES

model for runoff simulation. In this paper these two models

are applied for long lead runoff simulation in the

southwestern part of Iran. In the ANN model SLP and SLP

difference are used for long-lead forecasting of rainfall and

in the SDSM model relative humidity at 850 hPa height,

near surface specific humidity and near Surface relative

humidity have been selected. These climate signals have

been selected with the best R-Squared values.

Comparing the results, it can be concluded that the MLP

model performance is better than the ELMAN model. In this

model, MAE is 5.2 and RMSE is 5.4 and 78% of simulation

errors are within 30% of the observed values. In the

IHACRES model these values are 4%, 5% and 56% of

simulation errors. Using the IHACRES model these values

are within 10% of the observed values.  IHACRES

performance is better than the ANN model even though it is

a more data intensive model compared to the ANN model. 
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Fig. 7 Comparison of observed and simulated runoff values using
two ANN models
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Fig. 8 Comparison of results of runoff prediction models using
IHACRES and ANN Models
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Table 6 Percentage of predictions with absolute percent error less
than 10, 20 and 30 in different models
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Parameter Model 

(Variance) (Mean) 

Leven’s test 
Wilcoxon rank 

sum test 
p-value TS p-value

SWSI 

ELMAN 0.682 0.170 0.9923 

MLP 0.912 0.012 0.9768 

IHACRES 0.797 0.067 0.9304 

Runoff 
ELMAN 0.87 0.025 0.6048 

MLP 0.955 0.003 0.5457 

IHACRES 0.982 0.001 0.9314 

Table 7 The results of performing Wilcoxon rank sum tests for
evaluation of simulated runoff values and SWSI index in the study

area

year ELMAN MLP IHACRES Observed 
1975 1.36 0.72 -0.24 -0.58 
1976 0.88 0.63 -0.04 -0.15 
1977 -0.02 -1.02 -1.79 -1.53 
1978 1.81 2.21 2.04 2.27 
1979 1.41 2.25 1.42 1.70
1980 -2.01 -2.22 -2.81 -2.34 
1981 1.70 1.58 -0.46 -0.35 
1982 4.10 4.10 4.12 4.10 
1983 1.46 1.11 0.94 1.31
1984 -1.70 -2.24 -2.46 -2.43 
1985 -3.44 -3.37 -3.86 -3.50 
1986 -2.70 -1.90 -2.81 -2.80 
1987 2.16 2.72 2.68 2.67
1988 1.21 1.07 -0.24 -0.02 
1989 -3.80 -3.37 -2.46 -3.93 
1990 1.36 1.62 1.31 1.59 
1991 1.84 2.35 2.88 2.96
1992 -1.06 -2.97 -1.21 -2.00 
1993 -2.44 -3.73 -2.46 -2.16 
1994 -4.04 -2.99 -1.79 -2.12 
1995 -3.20 -3.64 -3.86 -3.50 
1996 1.41 0.89 1.89 1.99
1997 1.79 1.46 2.63 2.67 
1998 3.84 3.88 3.89 3.86
1999 -0.82 0.13 0.80 0.66 
Error 0.36 0.32 0.12

Table 8 Comparison of SWSI based on the results of different
models
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