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Abstract 

Today, one of the most detrimental consequences of developing road transportation systems in a country is traffic accident 
that places a huge financial burden on the society. The large number of passenger carriage together with high rate of crashes 
on highway corridors increase the necessity of a comprehensive study of regional transportation corridors hazardous zones. 
Current methods for identification of road segments with high potential of accident are mainly based on statistical approaches. 
Since there are not enough crash records for recently built roads, statistical methods are useless for this type of road networks. 
This paper presents a geospatial neuro-fuzzy approach for identification of hazardous zones on regional transportation 
corridors. It is a new research method for road hazardous zones modeling with abilities to infer meaning from complicated 
and ambiguous data. To demonstrate the framework, a prototype is developed and tested on Qazvin-Rasht (Iran) regional 
corridor. The results are compared against the existing black spots in the study corridor which Highway Police has 
determined based on statistical methods. Results show a correlation between the output of the proposed method and existing 
black spots. Moreover, the proposed approach has identified a few more zones in the corridor that were not determined by 
traditional statistical methods. The results confirms that this method is not only a cheaper one but also a robust means of 
analyzing the level of hazard associated with each road segment under consideration, specially when data are uncertain and 
incomplete. 

Keywords: Road safety, Road hazardous zones (RHZ), Geospataial information system (GIS), Adaptive neuro fuzzy inference 
system (ANFIS). 

1. Introduction 

Transport systems have a major role in transporting 
goods and human, and it is obvious that existence of any 
problem in a transport system would endanger both the 
vehicles and travelers. One of these problems is traffic 
accident that places a huge financial burden on the society. 
For many classes of age groups, road traffic accident is 
among the leading causes of death. In particular, it is the 
first leading cause of death for people with the age of 15 to 
29 years old [1]. The World Health Organization predicts 
that road collisions will jump from the ninth leading cause 
of death in 2004 to the fifth in 2030. 

More than 80% of transportation in Iran is done through 
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road network [2], while the casualty statistics resulting from 
road traffic accidents is very high. To be more precise, 
recent investigations in Iran indicate that on average three 
persons per hour die in traffic accidents [3]. Statistics show 
that the number of road traffic accidents in Iran is still 
unacceptable specially when it is compared with the 
corresponding statistics for developed countries. In 2011 
alone, more than 20,000 fatality accidents were recorded on 
Iran roads that caused considerable social and economical 
costs. According to a report by Iran Highway Police, most 
of the traffic accidents in 2011 (12232 fatalities) were 
occurred on regional transportation corridors. 

One efficient approach to reduce crashes on regional 
roads is the identification of locations where traffic 
accidents tend to aggregate (the road hazardous zones or 
road black spots) through using the state of the art 
technologies and implementing corrective road safety 
measures. At present in Iran, accident data obtained from 
the "Analysis Form for Traffic Accidents" are used to 
identify the road segments with high potential for accident. 
This form is filled out by police officers for each traffic 
accident with injuries or deadly wounded casualties on a 
public road. Based on the information in these forms, 
hazardous road segments are identified using statistical 
approaches. Montella [4] has compared the performance of 

Transportation 
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various statistical methods for hotspot identification. 
Since there is no statistical information available for 

newly built corridors, therefore, statistical methods can 
hardly be used for the regional roads which are recently 
built. Consequently, there is a need for a general method 
by which road segments with high potential for accident 
on regional transportation corridors can be identified. 
Other limitation of the current methods is neglecting the 
spatial factor [5]. Geospatial Information Systems (GIS) 
can help to analyze and manage the effect of different 
environmental and roadway factors on concentration of 
traffic accidents. The application of GIS to transportation 
problems relies on the conventional functionality of GIS in 
terms of data management, visualization, query, and 
spatial analysis [6]. Moreover, a good understanding of the 
spatial and temporal distribution of accidents makes a 
considerable contribution to developing appropriate 
accident reduction programs and to evaluating their 
effectiveness [7].  

Spatial analysis is used in this study for manipulating 
spatial data and visualizing relationships between spatial 
and non-spatial variables that are used for road hazardous 
zones identification. A major challenge in dealing with 
road hazardous zones using a geospatial method is 
considering experts linguistic judgments using an 
inference process. Therefore, the main objective of this 
study is to show the flexibility and advantages of using the 
neuro-fuzzy (ANFIS) and spatial analysis to regional 
corridors hazardous zones identification.  

There are four main characteristics that this study takes 
into consideration: (a) presenting a general approach for 
identification of road hazardous zones in regional corridors 
through spatial analysis and neuro-fuzzy modeling (b) a fuzzy 
description of uncertain variables in road hazardous zones 
identification, (c) modifying imprecise model descriptions 
and improvement of initial fuzzy reasoning using the ANFIS 
learning capabilities, and (d) exploring environmental and 
roadway factors contributing to traffic accidents which leads 
to the identification of locations which are truly hazardous 
from a road safety authority perspective. 

This paper is organized in six sections. After this 
introduction, a literature review is provided in section 2. 
The proposed methodology which consists of fuzzy 
reasoning and neuro-fuzzy concepts and its applicability to 
road hazardous zones identification is described in section 
3. Section 4 presents the implementation process and an 
application of the proposed approach. Evaluating the 
results and discussion are discussed in section 5. The last 
section concludes with a discussion on the advantages of 
the proposed approach. 

2. Literature Review 

Various methods have been used in identifying road 
hazardous locations. In the simplest way, road hazardous 
zones are identified based on the total number of 
accidents. This is done by sorting locations in descending 
order based on traffic accident frequencies. Some studies 
[8-13] have used regression and Bayesian empirical for 
exploring the effect of roadway geometric and 

environment factors on highway corridors accident 
frequencies. Moreover, a variety of methods for point 
pattern analysis of traffic accidents have been proposed. 
These methods include quadrat analysis, nearest-neighbor 
distances, kernel density estimation, and K-function [7, 
14-16]. Anderson [17] used a surface-based modeling 
approach through an interpolation function for road black 
spots identification. Yamada and Thill [7] demonstrated 
how the network version of a K-function method can be 
applied to spatial pattern analysis of traffic accidents. 
Yamada and Thill [18] studied the application of two types 
of local indicator of network-constrained clusters (the local 
Moran I statistic and the local Getis and Ord G statistic) on 
highway vehicle crashes. Steenberghen et al. [19] 
presented a method for identifying road hazardous 
locations in a network space. In their study, a road 
hazardous location is considered as a place where 
unexpected number of road accidents occurs under the 
assumption of total randomness of events. 

The studies discussed above fail to consider the factors 
contributing to accidents that bias the process of road 
hazardous locations identification. Moreover, most of the 
current methods could not handle uncertain data in 
modeling road hazardous zones. Studying artificial 
intelligence (AI) based algorithms such as neuro-fuzzy 
system indicates that these algorithms with their unique 
abilities to infer meanings from ambiguous and deficient 
data are useful in many road safety applications [20-23]. 
Hadji Hosseinlou and Sohrabi [24] used a neuro-fuzzy 
inference system for predicting accident frequency on 
intercity roads. This study showed that the neuro-fuzzy 
modeling can estimate accident frequency in more than 
96% of cases with a good quality.  

On the other hand, due to the spatial nature of 
accidents, using geospatial based analytical methods is 
suitable for road hazardous locations analysis. Use of GIS 
for transportation purposes (GIS-T) is quickly becoming a 
mature domain of GIS technology application and has 
gained full recognition among transportation practitioners 
and academics [25]. Many studies have used GIS 
capabilities for analyzing safety and risk along roads, 
displaying crash locations and performing various crash 
analyses including analysis of traffic hazard intensity, 
preventing traffic accidents, and identifying road 
hazardous zones [26-30]. Carreker and Bachman [31] 
demonstrated that spatial analysis improves both the 
accuracy and efficiency of locating crashes along highway 
corridors. Steenberghen et al. [32] discussed the usefulness 
of spatial analysis and point pattern techniques for 
defining road accident black zones within urban 
agglomerations. Erdogan et al. [33] used GIS as a 
management system for accident analysis and determined 
hotspots on a highway corridor. This was done by 
converting accident records to a tabular form where they 
could then be matched to the road network.  

In most of the studies discussed above, identification of 
road hazardous zone is not based on factors which 
contribute to accident occurrence and zones are identified 
if their accident occurrence is greater than a threshold. 
Also, a review on the scope of these studies indicates that 
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most researchers have chosen to analyze specific road 
geometry (such as curves or intersections) or specific 
vehicle types (such as large trucks). This study tries to 
develop a general approach for identifying road hazardous 
zones using spatial analysis and an inference process 
which considers experts linguistic judgments. It attempts 
to improve previous researches by integration of fuzzy 
reasoning and Artificial Neural Networks (ANN) learning 
capabilities in order to spatially identify road hazardous 
zones on regional highway corridors. 

3. Methodology 

3.1. Research design 

This study presents a geospatial neuro-fuzzy approach 
for modeling hazardous zones and crash propensity 
characterization on regional highway corridors. It develops 
a methodology where roadway geometry and 
environmental factors are processed through an ANFIS to 
categorize the level of hazard associated with each road 
location under consideration. Proposed approach uses 
existing crash records and roadway information to 
calibrate and validate the model. Research methodology 
helps regional roads decision makers to determine which 
hazard factors are the most important ones, and ultimately 
to decide where hazard mitigation strategies should be 
employed. Fig. 1 shows the overall research design. 

 

 
Fig. 1 Research methodology for identification of road hazardous zones 

 
3.2. Fuzzy reasoning 

Fuzzy logic is essentially a system for dealing with 
uncertainty and vagueness of concept [34]. Fuzzy set 
theory, introduced by Zadeh in the 1960s, resembles 
human reasoning in its use of approximate information and 
uncertainty to generate decisions [35]. Fuzzy logic allows 
objects to take partial membership in vague concepts. The 
main idea of fuzzy logic is that items in the real world are 
better described by having partial membership in 
complementary sets than by having complete membership 
in exclusive sets [35]. 

3.3. Hazardous zones identification based on fuzzy 
inference system 

This research suggests the use of fuzzy inference 
system within the neural network for road hazardous zones 
identification because of the uncertainty associated with 
characterizing locations. Other reasons for using fuzzy 
logic in this research are: 

 Research variables are continuous, imprecise, or 
ambiguous, 

 Fuzzy logic is well suited for modeling 
continuous, real world systems, 
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 Fuzzy sets are an extension of crisp (two valued) 
sets to handle the concept of partial truth, which enables 
the modeling of uncertainties of natural language [36], 

 Fuzzy logic has a tolerance for imprecision which 
can be exploited to achieve tractability, robustness, low 
solution cost, and better rapport with reality [37], 

Traffic accidents are caused due to interaction of 
vehicle, driver, roadway and environmental factors. All 
these factors interact with each other and influence the 

occurrences and severity of accidents. In this study the 
criteria are selected based on possible causes identified in 
the accident reports, a review of the literature on road 
safety research, and the availability of data. These criteria 
include curvature, slope, visibility, distance from 
intersections, road width, distance from the starting point 
of roads, distance from population centers and weather 
condition (rain values). Table 1 illustrates these criteria 
and their descriptions. 

 
Table 1 Description of criteria for road hazardous zones identification 

Criteria Description 

Curvature The shorter the radius the higher the hazard potential 

Slope Sections with higher slope have higher potential for hazard 

Visibility Sections with less visibility have higher potential for hazard 

Distance from Intersection Sections closer to intersections have higher hazard potential 

Road Width The narrower the road width is, the higher the hazard potential is 

Distance from the Starting 
Point of roads (cities) 

Sections closer to cities have higher hazard potential 

Distance from Population 
Centers 

Sections closer to the population centers have higher hazard potential 

Rain Value The higher the rain value is, the higher the hazard potential is 
 
According to Table 2 these variables can be divided 

into two classes: road geometry design factors and 
environmental factors. Each of these variables is treated as 
a risk factor in road hazardous zones modeling. Fuzzy 
processing of hazard descriptors requires a specification of 

the linguistic labels which represent fuzzy sets. The 
linguistic variables and linguistic labels used for 
investigations of each geometry and environmental factors 
are listed in Table 2. 

 
Table 2 Linguistic variables and labels for the fuzzy-based hazardous zones identification process 

 Type Linguistic Variable Linguistic Labels 

Input 

Road 
Geometry 

Factors 

Curvature Very Small, Small, Appropriate, High 
Slope Low, Appropriate, High 

Visibility Appropriate, Inappropriate 
Distance from Intersection Very Near, Near, Far 

Road Width Very Narrow, Narrow, Appropriate, Wide 
Distance From the Starting Point 

of Roads 
Very Near, Near, Far 

Environmental 
Factors 

Distance from Population Centers Near, Moderate, Far 

Rain Value Very Low, Low, High, Very High 

Output - Danger 
Absolutely Safe, Safe, Danger Prone , 

Danger, Very Danger 

 
The type of fuzzy membership functions for each 

factor is very important, therefore, in this study various 
functions are tested and appropriate function for each 
variable is determined. Widely applied membership 
functions are bell-shaped and trapezoidal functions with 
maximum equal to 1 and minimum equal to 0. Trapezoidal 
functions are modeled with four parameters ( , , ,    ). 
This function is defined as (Fig. 2 and Eq. 1): 

 

 
Fig. 2 Trapezoidal membership function 
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In special cases like symmetrical trapezoids and 

triangles the number of parameters is reduced to three. As 
the values of these parameters change, the membership 
functions vary accordingly, thus exhibiting various forms 
of membership functions [38]. An important aspect of 
these membership functions is that they are at least 

piecewise differentiable. This allows for tuning the 
membership function with a learning procedure that is 
discussed in the next section. This research uses the 
trapezoidal membership functions because of their 
simplicity, learning capability, and the short amount of 
time required for designing the system.  

The main steps of proposed fuzzy inference system are: 
input, fuzzification, implication, aggregation and 
defuzzification. Fig. 3 shows the structure of fuzzy 
inference system for identification of road hazardous 
zones. 

 

 
Fig. 3 Fuzzy inference system for identification of road hazardous zones 

 
After implementing the criteria, in order to create a 

useful statement, complete sentences have to be 
formulated. Conditional statements, IF-THEN rules, are 
statements that make fuzzy logic useful. A single fuzzy IF-
THEN rule can be formulated according to Eq. 2: 

 
IF x is A; THEN y is B (2) 

 
Where A and B are linguistic labels defined by fuzzy 

sets on the range of all possible values of x and y, 
respectively. The IF part of the rule "x is A" is called 
antecedent or premise, the THEN part of the rule "y is B" 

is called consequent. The antecedent is an interpretation 
that returns a single number between 0 and 1, whereas the 
consequent is an assignment that assigns the entire fuzzy 
set B to the output variable y. The antecedent may 
integrate several inputs using logical AND and OR. Fuzzy 
reasoning with fuzzy IF-THEN rules enables linguistic 
statements to be treated mathematically.  

According to Table 2 this study restricts output of 
fuzzy process to five classes, namely absolutely safe, safe, 
danger prone, danger and very danger. Some samples of 
the IF-THEN fuzzy rules for determination of road 
hazardous zones have been given in Table 3. 

 
Table 3 Some fuzzy rules 

Sample Fuzzy Rules 
1- IF radius is Very Small AND slope is High AND visibility is Inappropriate AND distance from 
intersection is Very Near AND road width is Very Narrow AND rain value is Very High AND 
distance from cities is Very Near THEN point is Very Dangerous. 
3- IF distance from population centers is Near AND radius is Very Small AND slope is Appropriate 
AND visibility is Inappropriate AND distance from intersection is Very Near AND road width is 
Very Narrow AND rain value is Low AND distance from cities is Near THEN point is Very 
Dangerous. 
4- IF slope is High AND visibility is Inappropriate AND distance from intersection is Far AND road 
width is Very Narrow AND distance from cities is Near THEN point is Dangerous. 
5- IF radius is Very Small AND visibility is Inappropriate AND distance from intersection is Far 
AND distance from cities is Far THEN point is Dangerous. 
6- IF distance from population centers is Near AND radius is Appropriate AND slope is Low AND 
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visibility is Appropriate AND distance from intersection is Far AND road width is Appropriate AND 
rain value is Low AND distance from cities is Far THEN point is Danger Prone. 
7- IF distance from population centers is Moderate AND radius is Appropriate AND slope is 
Appropriate AND visibility is Appropriate AND distance from intersection is Near AND road width 
is Appropriate AND rain value is Low THEN point is Danger Prone. 
8- IF distance from population centers is Far AND radius is High AND slope is Appropriate AND 
visibility is Appropriate AND distance from intersection is Far AND road width is Width AND rain 
value is High AND distance from cities is Far THEN point is Safe. 
9- IF distance from population centers is Far AND radius is High AND slope is Appropriate AND 
visibility is Appropriate AND distance from intersection is Far AND road width is Width AND rain 
value is Very Low AND distance from cities is Far THEN point is Absolutely Safe. 

 
This research uses the fuzzy Takagi and Sugeno (TSK) 

concept [39] for fuzzy based hazardous zones 
identification, because it offers some advantages with 
regard to computational efficiency and adaptive 
optimization. In TSK approach membership values in the 
premise part are combined with product inference to get 
the firing strength of each rule and the consequent part of 
each rule is modeled by a linear combination of the input 
variables plus a constant term (Eq. 3). The TSK rules can 
be expressed as following [40]: 

 
jR : IF 
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Where jR is the jth rule, j =1,2,. . .,m, 
ix  is ith input 

variable, i =1,2,. . .,n, j
iA  are linguistic terms of the 

premise part (e.g. Very Small, Small, Appropriate, High), 
fj is the output variable (i.e. fuzzy indicator for the amount 

of hazard level), and j
ia are coefficients of linear 

equations. The process of shaping the consequent 
(implication) is carried out and then aggregates the output 
fuzzy sets over all rules. The final output y
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defuzzifier) of hazardous zones identification fuzzy 
inference system is calculated by Eq. 4: 
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The final output is the weighted average of the 

consequent equations rules. Fig. 4 shows the overall 
process of TSK fuzzy reasoning structure. 

 

 
Fig. 4 Takagi and sugeno fuzzy reasoning structure 

 

3.4. Improving model and tuning fuzzy membership 
functions 

Fusion of artificial neural networks and fuzzy inference 
systems have attracted the growing interest of researchers 
in various scientific and engineering areas due to the 
growing need of adaptive intelligent systems to solve the 
real world problems [27]. A neuro-fuzzy system is a fuzzy 
system that is trained by a learning algorithm from neural 
network theory. This approach employs heuristic learning 
strategies derived from the domain of neural networks 
theory to support the development of a fuzzy system. The 
advantages of combination of neural networks and fuzzy 

inference systems are obvious. While the learning 
capability is an advantage from the viewpoint of fuzzy 
inference system, the automatic formation of linguistic 
rule base is another advantage from the viewpoint of 
neural network [41]. Although fuzzy logic can encode 
expert knowledge using linguistic labels, it usually takes a 
lot of time to tune the membership functions which 
quantitatively define these linguistic labels. Moreover, 
applications of fuzzy systems are restricted to the fields 
where expert knowledge is available and the number of 
input variables is small. Neural network learning 
techniques can automate this process and reduce 
development time and cost while improving performance 
and extracting fuzzy rules from numerical data 
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automatically (overcoming the fuzzy problem of 
knowledge acquisition). An integrated neuro-fuzzy 
reasoning system will possess the advantages of both 
neural networks (learning from examples, optimization of 
certain parameters) and fuzzy systems (meaningful 
representations, encoding knowledge, fuzzy rules and 
fuzzy reasoning).  

The adaptive neuro-fuzzy inference system (ANFIS) is 
a specific type of neuro-fuzzy systems proposed by Jang 
(1993) [42]. ANFIS allows adaption of a model with 
hybrid learning rule and least squares error estimation. The 
architecture of ANFIS is based on a multilayer feed-
forward network combined with a back-propagation 
gradient-descent-type learning algorithm that has a single 
output node [42]. ANFIS simulates Takagi–Sugeno–Kang 
fuzzy rule where the consequent part of the fuzzy rule is a 
linear combination of input variables and a constant. In the 
proposed fuzzy hazardous zones identification system each 

Takagi and Sugeno rule comprises of two sets parameters: 
the premise parameters ( , , ,j j j j

i i i i    ), which are the 

parameters of the membership functions (Eq. 1), and the 

consequent parameters j
ia , which are the coefficients of 

consequent part. 
Fig. 5 shows the ANFIS structure which is proposed 

for identification of road hazardous zones. To reflect 
different adaptive capabilities, circle and square nodes are 
distinguished in this figure. A square indicates an adaptive 
node which has adjustable parameters whereas a circle 
represents a fixed node without parameters. The links 
between nodes in the network only indicate the flow 
direction without any weights. Input of the proposed 
ANFIS is divided into two groups (cf. Table 2), i.e., road 
geometry factors and environmental factors, and the output 
of the system is the identified hazard level. 

 

 
Fig. 5 Proposed ANFIS structure for road hazardous zones identification 

 
Training process of this adaptive network is carried out 

in two steps, forward and backward. In the forward pass of 
the learning algorithm, processing proceeds up to Layer 4. 
In layer 4 the consequent parameters are adjusted and the 
network output in layer 5 indicates a certain hazard level. 
In the backward pass, the error rates propagate backward 
and the premise parameters in layer 1 are updated. In fact, 

for the parameters in the layer 1, back-propagation 
algorithm is used. For training the parameters in the Layer 
4, a variation of least-squares approximation or back-
propagation algorithm is used; therefore, this system uses a 
hybrid learning algorithm in order to train the network. 
Characterizations of the node functions in each layer are 
explained below: 
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Layer 1: Is the fuzzification layer in which each node is 
as a membership function. Its output specifies the degree to 
which the given input xi satisfies the linguistic terms j

iA . 

Layer 2: According to Eq. 5, the nodes in this layer 
multiply the incoming membership values and produce the 
firing strength of a rule ( j ). 

Layer 3: Is the normalization layer which normalizes the 
strength of all rules. In this layer the nodes labeled N 
determine the normalized firing strength of a rule                      

(
1

m

j j j
j

  


  ).  

Layer 4: Is the layer of adaptive nodes; in this layer each 
node j calculates the weighted consequent values ( j if ). 

Layer 5: The single node in this output layer receives 
the final result of ANFIS system (summation of the 
network outputs of the nodes in Layer 4). 

 
 
 
 

4. Implementation and Results 

This section briefly explains the implementation steps 
of the proposed method including data acquisition and 
preparation, modeling hazardous zones based on fuzzy 
inference system, optimization of the model and finally the 
evaluation of results. 

4.1. Data and study area 

To illustrate how the proposed methodology works, 
part of Qazvin-Rasht highway corridor which connects 
Tehran to the North of Iran (Gilan), is chosen as the study 
corridor. The study corridor is located in a mountainous 
region where elevation ranges from approximately 300 to 
2394 m. It is a two-lane two-way road and according to 
previous accident records, some road segments have high 
potential for accidents. Fig. 6 shows the study area. 

This study uses several sources of primary data in 
various formats. Table 4 describes the primary data of this 
research. 

 

 
Fig. 6 The study corridor 

 
Table 4 Description of primary data layers. 

Data Layers Source Scale/Resolution Description 

Topographic Map 
National Cartographic Centre 

(NCC) 
1: 50000 Digital 

Digital Elevation Model National Cartographic Centre 10 meter Digital 

Geometric Specification Road Ministry - Attribute 
Weather Stations 

Information 
Meteorological Organization - 

To acquire rain values 
along the road 

Crash Data Highway Police - - 
Excising Hazardous 

Zones 
Ministry of Road and 
Urban Development 

- For evaluation and test 
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4.2. Experimental investigations 

For testing the proposed method on the study corridor, 
it is divided into smaller segments using dynamic 
segmentation. Next, a database of all data and layers is 
generated and road geometry and environmental attributes 
are assigned to each segment. Each variable in Table 1 is 
treated as a risk factor in analysis of hazardous zones 
identification where critical standard boundaries for each 
criterion (observed indicators) are determined. Since 

classes or groups of data with boundaries are not sharply 
defined, their indicators and relationships have uncertain 
definition. Therefore, some uncertainties are lying in this 
method. Fuzzy set theory and linguistic variables is a 
useful tool for solving uncertainty. It also facilitates 
subsequent integration of data layers in the generation of 
composite risk maps.  

Prior to fuzzy process the membership functions of 
each factor have to be specified. The initial membership 
functions are depicted in Fig. 7.  

 

Radius (m) 
Very Small = [0 0 200 400], Small = [300 450 550 700]  

 Appropriate = [500 650 750 900], High = [700 800 100000 100000] 

 

Slope (Percent) 
  Low = [0 0 1 4], Appropriate = [3 5 7 9], High = [8 10 100 100] 

 

 

Visibility (m) 
Appropriate = [0 0 100 250], Inappropriate =[150 300 1000 1000]  

 

 

Dist. from Intersection (m) 
Very Near = [0 0 50 150], Near = [50 125 175 250],  

Far = [175 250 100000 100000] 

 

Road Width(m) 
Very Narrow = [0 0 5 15], Narrow = [10 15 20 25] 

Appropriate = [15 22.5 27.5 35], Width = [25 32.5 100 100]  

 

Dist. from Population Centers (m) 
Near= [0 0 200 500], Moderate= [400 600 900 1100],  

Far= [900 1000 100000 100000] 

 

Dist. From the Starting Cities (m) 
Very Near = [0 0 4000 5500], Near = [4500 6000 9000 10500],  

Far = [9500 11000 100000 100000] 

 

Rain Value(mm) 
Very  Low= [0 0160 175], Low = [165 175 185 195], 

High =[185 195 205 215], Very High= [205 215 300 300] 

 

Fig. 7 Initial input membership functions 
 
Formulation of the fuzzy rules requires exact 

consideration of impact of each descriptor on the accident 
occurrence and hazard values, complexity of each factor 
and the experience of experts. Therefore, selection of 
appropriate rules for road hazardous zones identification is 
a sensitive and important subject.  

After defining the input and output of fuzzy inference 
system and its membership functions and rules, the value 
of danger for each segment is determined. Danger values 
in the proposed fuzzy inference system are classified in the 
range of 0 (absolutely safe) to 250 (very dangerous). Fig. 8 
depicts the output of applying fuzzy reasoning on the study 
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corridor for identification of zones with high potential for 
accident. In this figure each point indicates a hazardous 

zone and each danger class is shown with a special symbol 
and color.  

 

 
Fig. 8 The study corridor hazardous zones (approach: fuzzy reasoning) 

 

4.2.1. Hazardous zones identification based on neuro-fuzzy 
modeling 

Definition of membership functions for the hazard 
factors is an important and complex problem. This section 
tries to use a neuro-fuzzy inference system to tune and 
improve the fuzzy membership functions and fuzzy model 
through a training process. For the training process of the 
proposed neuro-fuzzy inference system a very large 
number (100) of training datasets with appropriate 
distribution along the corridor is used. Training data are 
selected by considering the transportation experts 
knowledge and the corridor crash records in the past. For 
verification of learning process, thirty extra sample points 
which are not included in the objective function of neuro-
fuzzy optimization process, are used. 

The output of the proposed reasoning system (y) is 
calculated using the training dataset and employing Eqs. 4 
and 5. Assuming that yd is the desired output for input 
dataset, an error measure can be defined by the squared 
error between the actual output (y) and the desired output 
(Eq. 6): 
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According to Eq. 3 and 6 the error measure E depends 

on the tuning parameters ( , , ,j j j j
i i i i    ) and j

ia . 

Parameter update starts with an initial setting of the values 

of the premise parameters and consequent parameters. The 
fuzzy reasoning steps are repeated with the update of the 
consequent and premise parameters until the change in the 
inference error is less than a predefined threshold and this 
indicates convergence of the process. Fig. 9 shows the 
error measure (y axis) as a function of the number of 
iterations (x axis) for checking and training data.  

 

 
Fig. 9 Training process  

 
Fig. 9 shows that the checking process curve is, as 

expected, slightly above the error curve obtained for the 
training data. The very small difference for the final 
iterations indicates that system is correctly trained. Fig. 10 
shows the adapted membership functions after the training 
process. 

Comparing the initial membership functions in Fig. 7 
with the tuned ones in Fig. 10 indicates that after training 
most of the membership functions have changed 
significantly. This expresses that the training process of 

+    Absolutely Safe 

×    Safe 
®    Danger Prone 
+    Dangerous 
+    Very Dangerous 
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neuro-fuzzy system is quite effective.  
Fig. 11 depicts the output of applying proposed ANFIS 

model on the study corridor for identification of zones 
with high potential for accident. Comparing Fig. 11 and 

Fig. 8 indicates that by changing membership functions in 
the training process the values of hazard in some points 
have changed. 

 

Radius (m) 

 

Slope (Percent) 

 

Visibility (m) 

 

Dist. from Intersection (m) 

 

Road Width(m) 

 

Dist. from Population Centers (m) 

 

Dist. From the Starting Cities (m) 

 

Rain Value(mm) 

 
Fig. 10 Tuned membership functions 

 

 
Fig. 11 The study corridor hazardous zones (approach: anfis model) 

+    Absolutely Safe 

×    Safe 
®    Danger Prone 
+    Dangerous 
+    Very Dangerous 
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5. Discussion 

This study proposed an ANFIS model for identification 
of regional transportation corridors hazardous zones with 
the ability to deal with imprecise, uncertain or ambiguous 
datasets and knowledge. It can consider the relationships 
among input data and hazard value which are difficult to 
handle using conventional regression and logic methods. 
In comparison with other studies that used statistical 
methods for road hazardous location identification [4, 7, 

13], the proposed method is a non-parametric technique 
which does not require prior knowledge of the crash 
factors. Furthermore, according to Montella’s study [43] 
such artificial intelligence based approaches can consider 
conditional interactions among input data.  

Using the proposed ANFIS model, the study corridor 
hazardous zones are obtained and visualized in a map (Fig. 
12). In this map red and blue points indicate locations of 
very dangerous and dangerous zones, respectively. Table 5 
illustrates the specifications of hazardous zones.  

 

 
Fig. 12 Map of hazardous zones along the study corridor (red: very dangerous, blue: dangerous, yellow: excising accident zones) 

 
Table 5 Kohin–Loshan hazardous zones specifications 

End of Route Start of Route Distance from the Start (km) Danger Value Zone 

Loshan 
Nasim-Shomal 

Intersection 
4-5 Very Dangerous 1 

Loshan 
Nasim-Shomal 

Intersection 
31-32 Very Dangerous 2 

Loshan 
Nasim-Shomal 

Intersection 
34-35 Very Dangerous 3 

Loshan 
Nasim-Shomal 

Intersection 
34-35 Very Dangerous 4 

Loshan 
Nasim-Shomal 

Intersection 
35-36 Very Dangerous 5 

Loshan 
Nasim-Shomal 

Intersection 
36-37 Very Dangerous 6 

Loshan 
Nasim-Shomal 

Intersection 
1-2 Dangerous 7 

Loshan 
Nasim-Shomal 

Intersection 
2-3 Dangerous 8 

Loshan 
Nasim-Shomal 

Intersection 
3-4 Dangerous 9 

Loshan Nasim-Shomal 4-5 Dangerous 10 
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Intersection 

Loshan 
Nasim-Shomal 

Intersection 
5-6 Dangerous 11 

Loshan 
Nasim-Shomal 

Intersection 
5-6 Dangerous 12 

Loshan 
Nasim-Shomal 

Intersection 
7-8 Dangerous 13 

Loshan 
Nasim-Shomal 

Intersection 
9-10 Dangerous 14 

Loshan 
Nasim-Shomal 

Intersection 
11-12 Dangerous 15 

Loshan 
Nasim-Shomal 

Intersection 
14-15 Dangerous 16 

Loshan 
Nasim-Shomal 

Intersection 
27-28 Dangerous 17 

Loshan 
Nasim-Shomal 

Intersection 
31-32 Dangerous 18 

Loshan 
Nasim-Shomal 

Intersection 
31-32 Dangerous 19 

Loshan 
Nasim-Shomal 

Intersection 
33-34 Dangerous 20 

Loshan 
Nasim-Shomal 

Intersection 
33-34 Dangerous 21 

Loshan 
Nasim-Shomal 

Intersection 
33-34 Dangerous 22 

Loshan 
Nasim-Shomal 

Intersection 
34-35 Dangerous 23 

Loshan 
Nasim-Shomal 

Intersection 
34-35 Dangerous 24 

Loshan 
Nasim-Shomal 

Intersection 
34-35 Dangerous 25 

Loshan 
Nasim-Shomal 

Intersection 
38-39 Dangerous 26 

Loshan 
Nasim-Shomal 

Intersection 
44-45 Dangerous 27 

Loshan 
Nasim-Shomal 

Intersection 
57-58 Dangerous 28 

Loshan 
Nasim-Shomal 

Intersection 
58-59 Dangerous 29 

Loshan 
Nasim-Shomal 

Intersection 
45-46 Dangerous 30 

Loshan 
Nasim-Shomal 

Intersection 
59-60 Dangerous 31 

Loshan 
Nasim-Shomal 

Intersection 
59-60 Dangerous 32 

Loshan 
Nasim-Shomal 

Intersection 
61-62 Dangerous 33 

 
In Fig. 12 yellow points show the existing black spots 

along the corridor which Highway Police has determined 
based on statistical methods. These spots are compared 
with the hazardous zones that are identified using the 
proposed model. The results show a good correlation 
between existing black spots (yellow dots) and the 
hazardous zones (red and blue points). This confirms Hadji 
Hosseinlou and Sohrabi’s study [24] which showed 
applicability of neuro-fuzzy systems in predicting traffic 
hot spots in intercity roads.  

In some instances the zones of highest risk do not 
exactly overlay with black spots. Moreover, there are some 

hazardous zones that were not determined using traditional 
statistical methods and are not in Highway Police 
database. The authors believe these zones could be prone 
to accident in the future and should be taken into 
consideration in the study corridor safety programs. 

For quality control of the purposed approach as well as 
verification of the spatial analysis performance, the 
calculated hazardous zones (which their centers are within 
20 m of the existing black spots) are compared with existing 
black spots. Table 6 lists the coordinate differences of 
existing and calculated ones along x and y direction. 
Moreover, using Eq. 7 values of RMSE are calculated. 
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where '

iX is the locations of existing black spots, 
iX

is the centers of calculated zones, and n is number of 
correspond zones. 

 
Table 6 Evaluation of results 

Points 
Difference 

X(m) Y(m) 

2 1 8.3 
4 9 11.1 
7 1.2 5.4 
9 3.4 8.9 
11 6.5 6 
13 7.4 3.9 
14 15 8.9 
16 5.8 9.1 
17 8 2.4 
20 7.8 8 
25 2 1.7 
27 6.8 4.9 
31 4 3.9 
33 12.2 5 

RMSE 7.51 6.81 
Total RMSE 10.13 

 
RMSE value shows that using a 10.13 m threshold the 

corresponding points lay in the same segment. Several 
factors may explain this small differences including error 
associated with the crash data, approximate determination 
of existing black spots, error in road geometry and 
environmental data, temporary obstructions in the corridor, 
and other parameters and factors that are unaccounted in 
this analysis.  

Unlike statistical approaches that consider the 
frequency of accidents for identifying black spots, the 
proposed method can assess how a variation in one or 
more of input factors can affect the danger level on 
hazardous zones. Recognizing the most contributing 
factors and their effect on concentration of accidents helps 
not only to reduce the number of crashes on regional 
corridors but also to carry out precautionary safety 
operations on hazardous zones. Since, sensitivity analysis 
is done on proposed model by changing various input 
factors in ANFIS model, gradually adding and changing 
the ranges of the membership functions. Consequently, it 
is discovered that road curvature, slope and proximity to 
intersections tend to produce statistically significant 
differences in results. Therefore, these factors are the most 
important factors which affect the danger level on 
hazardous zones and need to be addressed in future hazard 
mitigation strategies in the study corridor. 

 
 

6. Conclusions 

This study developed a geospatial neuro-fuzzy 
approach for modeling hazardous zones in regional 
transportation corridors. It used fuzzy logic to model 
transportation experts’ linguistic judgments in its 
imprecise and vague nature. Spatial analysis was used for 
manipulating spatial data and visualizing the relationships 
between spatial and non-spatial variables related to 
hazardous zones. An important aspect of the proposed 
approach was improving the fuzzy model using an 
optimization process through which membership functions 
of the linguistically formulated fuzzy sets are tuned. 
Moreover, through the proposed ANFIS model it is 
possible to show how a variation in one or more of input 
factors can affect the danger level on hazardous zones. The 
study used past crash records along with roadway 
information to calibrate and validate the model. It was 
tested on a regional highway corridor and the calculated 
hazardous zones were compared with the existing black 
spots which were obtained using statistical approaches. It 
was found a good correlation between existing black spots 
and the calculated hazardous zones. Furthermore, the 
approach explored some hazardous zones in the study 
corridor that were not determined using statistical 
methods. 

As a future work the procedure used to identify 
hazardous zones on regional transportation corridors could 
be integrated with other road safety and crash analysis 
programs and/or applied to other types of infrastructure 
(rural roads, freeways, etc.). 
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