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Abstract 

The vibration of cable-stayed bridges subjected to the passage of high-speed trains is studied in this article. The moving 

train includes a number of wagons, each of which is modeled as a four-axle system possessing 48 degrees of freedom. The car 

model is nonlinear and three-dimensional and includes nonlinear springs and dampers of primary and secondary suspensions, 

dry friction between different parts and also clearances and mechanical stops. Two parallel rails of the track are modeled as 

Euler-Bernoulli beams on elastic points as rail pads. The rail irregularities are assumed to be stationary random and ergodic 

processes in space, with Gaussian amplitude probability densities and zero mean values. The bridge deck is modeled as a plate 

supported by some cables. The current model is validated using several numerical models reported in the literature of the 

earlier researcher. 
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1. Introduction 

To meet the economic, social and recreational needs of 

the community for safe and efficient transportation 

systems, more and more cable bridges have been built 

throughout the world. Cable-stayed bridges were often 

constructed for crossing wide rivers and deep valleys or 

existing urban structures because of their economic and 

aesthetic advantages. The investigation of the cable bridge 

vibration under moving train using different models has 

been widely reported in the literature. For most of the 

previous studies the cable-stayed bridge has been modeled 

as a planar system. Au et al. [1] used 2-D model to study 

bridge vibration due to random rail irregularities. They 

studied effects of number of random samples, damping, 

class of railway, track quality and initial motion of train 

vehicles on bridge vibration. Using a planar model for 

vehicle/ bridge, the vibration reduction of cable bridges 

excited by high-speed trains is studied by Yau and Yang 

[2]. 2-D models cannot simulate lateral vibration of the 

bridge. In addition wagon derailment and hunting 

vibration cannot be investigated by these models. 

For the 3-D models, the finite element method has been 

used as the main tool for bridge simulation. For instance, 

using FEM, the vibration of coupled train and cable-stayed 
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bridge systems in cross winds has been investigated by Xu 

et al. [3]. Also, the dynamic stability of trains moving over 

bridges shaken by earthquakes has been studied by Yang 

and Wu [4]. Using this model the maximum allowable 

speed for the train to run safely has been obtained under the 

specified ground acceleration. 

In this article, an analytical solution is presented for 

simulation of the coupled system. A 3-D model of the 

cable-stayed bridge, rails and passenger wagon is 

developed. Equations of motion of this model are derived. 

Using the proposed model, the effects of wagon 

parameters, lateral position of the rails and the rail 

irregularities on vehicle/track dynamics are studied. 

2. System Model 

2.1. The train model 

A 3-D model of a 2- axle passenger wagon with 48 

DOF is developed here. All parts of primary and 

secondary suspension systems with their nonlinear 

characteristics, friction between moving elements, the 

effect of wheel flange contact with the rail, wheel rail 

nonlinear contact forces, kinematics constraint of bogie 

center plate, and the contact forces between side pads and 

bogie frame are considered in this model. Schematic of 

wagon model is shown in Figure 1. Basic dynamic 

parameters of wagon are presented in Table 1.  

 

Structure - 

Steel 
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Fig. 1 Schematic view of the wagon model: (1) wagon body, (2) bolster, (3) secondary suspension system, (4) bogie, (5) primary suspension 

system, (6) wheelset, and (7) rail 

 
Table 1 Main parameters of the car body 

Notation Parameter Value 

Wagon body 

cM
 

Wagon body mass 20000 kg 

cxI
 

Wagon mass moment of inertia about X axis 32268 kg m2 

cyI
 

Wagon mass moment of inertia about Y axis 1125000 kg m2 

czI
 

Wagon mass moment of inertia about Z axis 1125000 kg m2 

Bolster 

bolM
 

Bolster body mass 630 kg 

bolxI
 

Bolster mass moment of inertia about X axis 160 kg m2 

bolyI
 

Bolster mass moment of inertia about Y axis 100 kg m2 

bolzI
 

Bolster mass moment of inertia about Z axis 160 kg m2 

Bogie 

bogM
 

Bogie body mass 500 kg 

bogxI
 

Bogie mass moment of inertia about X axis 250 kg m2 

bogyI
 

Bogie mass moment of inertia about Y axis 150 kg m2 

bogzI
 

Bogie mass moment of inertia about Z axis 300 kg m2 

wheelset 

wM
 

Wheelset body mass 1180 kg 

wxI
 

Wheelset mass moment of inertia about X axis 680 kg m2 

wyI
 

Wheelset mass moment of inertia about Y axis 73 kg m2 

wzI
 

Wheelset mass moment of inertia about Z axis 680 kg m2 

wr  
Wheel radius 0.46 m 

Primary Suspension 

zK
 

Vertical stiffness 6500 kN/m 

,x yK K
 

Lateral and longitudinal Stiffness 6500 kN/m 

zC
 

Vertical damping 10 kNs/m 

,x yC C
 

Lateral and longitudinal damping 9 kNs/m 

Secondary Suspension 



International Journal of Civil Engineering, Vol. 13, No. 3, Transaction A: Civil Engineering, September 2015 349 

 

zK
 

Vertical stiffness 2555 kN/m 

,x yK K
 

Lateral and longitudinal Stiffness 1500 kN/m 

zC
 

Vertical damping 30 kNs/m 

,x yC C
 

Lateral and longitudinal damping 20 kNs/m 

 

Considering the nature of this problem, use of 3-

dimensional wheelset model is essential. Determination of 

the correct contact point between wheel and rail and the 

exact value of the contact force between the two members 

are the major issues in 3-D modeling of the wheelset. To 

determine normal contact force between the wheel and 

rail, a flexible wheel–rail contact model based on semi-

Hertzian methods and the virtual penetration theory has 

been used [5]. Also in order to determine the tangential 

forces, the FASTSIM algorithm has been used. 

The connection link between wagons is considered to 

be hooks and draft gears [6]. The buffers at each side of 

the cars have also been included in the model to account 

for the absorption of the excess energy in inter-wagon 

force transmissions (Fig. 2). The degrees of freedom for 

the wagon components are listed in Table 2.  

 

 
Fig. 2 Model of connection between wagons 

 
Table 2 Degrees of freedom of each part of the wagon 

 longitudinal lateral vertical roll pitch yaw 

Car body * * * * * * 

Bogie frame * * * * * * 

Bolster - - - * * * 

Wheel set * * * * * * 

 
Table 3 Av , coefficient related to line grade[1] 

Line Grade vA
 

Line Grade vA
 

1 815.52 10  4 82.75 10  
2 88.84 10  5 81.55 10  
3 84.91 10  6 80.88 10  

 

2.2. The bridge model 

Figure 3 shows the bridge model adopted in the present 

study. The bridge deck is modeled as a plate supported by 

some cables. Also the bridge towers are modeled as a 

beam in lateral and a bar in vertical direction. Rails are 

modeled as Euler-Bernoulli beams on elastic points as rail 

pads (Fig. 4). 

 

 
Fig. 3 3D model of the bridge 
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Fig. 4 Side view of the system model 

2.3. Irregularities model 

Rail irregularities generally have a random distribution, 

and are considered as one of the major source of wagon 

vibration and wheelset derailment. The major causes of 

these irregularities are: incompatible substrate conditions, 

weather conditions, rail age and excessive train 

commutation on rails [7]. 

The random rail irregularities are assumed to be 

stationary random and ergodic processes in space, with 

Gaussian amplitude probability densities and zero mean 

values. They are characterized by their respective one-

sided power spectral density functions  rrG    where 

  is the route frequency. Fryba [8] has summarized 

various commonly used power spectral density functions. 

In the present study, the power spectral density functions 

based on the results of measurements on US railway tracks 

is adopted, with the empirical formula for evaluation of 

irregularities as: 

 

 
 
 

2 2 2
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(1) 

 

Where 
1

1 0.0233 m   and 1

2 0.131m   and the 

parameter vA  is a coefficient related to line grade, as 

shown in Table [1]. 

A sample function of rail irregularities can be 

generated numerically using the following series: 

 

   
1
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k k k
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(2) 

 

Where ka  is the amplitude of the cosine wave, k is a 

frequency within the interval  ,l u   in which the power 

spectral density function is defined, k is a random phase 

angle with uniform probability distribution in the interval

 0,2 , x is the global coordinate measured from the 

start of the rail section and N is the total number of terms 

used to generate the rail irregularities function. The 

parameters ka  and k  are computed using equations 

Eq.(3) and Eq.(4): 

 

 2k rr ka G   
 

(3) 

 1
2k l k     

 
(4) 

 u l N    
 

(5) 

 

In which u  and l  are the upper and lower limits of 

the frequency, and N is a sufficiently large integer. Using 

equations Eq. (1-5), random rail irregularities in each line 

grade can be generated. 

3. Equations of Motion 

3.1. Deck equation of motion 

Describing the bridge deck as a plate, the vertical 

vibration of the bridge deck is given by: 
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in which 

 

1

2

3

4
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(9) 

 

And 

 
3

212(1 )

s s
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E h
D





 

(10) 

 

Using Levy method, the solution of homogenous form 

of Eq. (6) can be expressed as [9]: 

 

( , , ) ( ) ( ) ( ) sin( ) ( ) ( )s m mn mn mn mn

m
w x y t X x Y y T t x Y y T t

a


 

 
(11) 

 

Substituting Eq. (11) into homogenous form of Eq. (6) 

yields: 

 

4 2 (2) (4)[( ) 2( ) ]sin( ) 0s s
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(12) 

Using Separation of variables, vibration frequencies 

can be found as: 
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and finally a differential equation can be derived as 

follows: 
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The bending moments and the shearing forces for the 

two free edges at y=0 and y=b are equal to zero. So the 

boundary conditions are: 
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(16) 

 

 

Ymn and ωmn can be achieved by Substituting the 

solution of Eq. (14) into Eq. (15) and Eq. (16) and solving 

the obtained homogeneous system. 

Solution of Eq. (6) Can be written in the form of Eq. 

(11). With same Xm and Ymn from homogenous solution. 

Substituting Eq. (11) into Eq. (6) yields: 
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(17) 

 

 

Multiplying Eq. (17) By “Xk (x)Ykh(y)” and then 

applying integral in the plate area yields the second-order 

ordinary differential equations of the plate vertical 

vibration in terms of the generalized coordinate Tmn(t) as 

follows: 
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3.2. Tower equation of motion 

Describing each tower as an Euler-Bernoulli beam, the 

lateral vibration of tower is given by: 
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In order to solve the homogenous form of differential 

equation in Eq.(20); the solution can be expressed as:  
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And; the boundary conditions are: 
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Using Eq.(23) and boundary conditions; Ai and βl can 

be found. As so, Eq.(20) can be written follows: 
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Using same method as explained in previous section, 

the second-order ordinary differential equation yields: 
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Where 
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For analysis of vertical vibrations of tower, each tower 

is considered as a bar. 
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The boundary conditions are: 
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The solution can be expressed as: 
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Substituting Eq.(33) into Eq.(29) yields: 
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Using same approach: 
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3.3. Rail equation of motion 

Describing each rail as an Euler-Bernoulli beam, the 

vertical vibration of rail is given by: 
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The boundary conditions are: 
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The solution can be determined as: 
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Substituting Eq.(40) into Eq.(36) yields: 
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The second-order ordinary differential equations of the 

rail can be found as follows: 
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3.4. Equation of motion of the vehicle 

Two coordinate systems are attached to the centers of 

masses of the model parts. One fixed to the part and 

rotates with it (denoted by the index “r”), and the other one 

is fixed at the initial position of the object (denoted by the 

index “o”). Also as shown in Figure 2 a coordinate system 

is fixed to the bridge deck as reference. 

Using Figure 5, the relationship between components 

of an arbitrary vector in rotating and initial coordinate 

systems can be given as: 

 
 

Fig. 5 Coordinate transformation 
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Also angular velocity can be obtained as: 
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And angular accelerations are: 
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For each wagon part, the equations of motion can be written as [10]: 

 

 o oF mw

 

(47) 
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(48) 

 

The complete system equations are obtained by 

combining the equations of motions of deck, towers, rails 

and the wagon parts. Considering the initial conditions 

(wagon velocity and position), the equations of motions 

are solved numerically using Runge-Kutta method. In this 

method the system equations are converted into state 

variables. Both displacements and velocities at time t t  

are treated as unknown and then can be obtained from the 

information of the time t [11]. 

4. Results and Discussions 

In order to study the effects of various parameters on 

the behavior of a vehicle–bridge interaction, Evripos 

bridge in Greece is chosen as a case study. The main 

parameters of the rails and the bridge used in the 

simulation are listed in Tables 4-5 [12]. 

 
Table 4 Main parameters of the track 

Notation Parameter Value 

rE
 

Elastic modulus of rail 205.9 Gpa 

rI
 

Rail second moment of area 3.217×105 m4 

r  
Rail density 7860 kg m-3 

rA
 

Rail cross-section area 7.715×10-3 m2 

fK
 

Fastener stiffness 6.5×107 N m-1 

fC
 

Fastener damping 6.5×104 N s m-1 

fL
 

Sleeper spacing 0.79 m 

rL
 

Rail gage 1.5 m 

cN
 

Number of cables 10 

 
Table 5 Main parameters of the bridge 

Notation Parameter Value 

a  Bridge length 395 m 

b  Bridge width 13.5 m 

sH
 

Deck thickness 0.45 m 

tH
 

Tower height 35 m 

cD
 

Diameter of each strand in one 

cable 
15.24×10-3 m 

s  
Density of deck 7860 kg m-3 

s  
Poisson's ratio of deck 0.29 

sE
 

Deck module of elasticity 205.9 Gpa 
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Figure 6 shows the maximum amplitude of rail 

vibration with respect to the lateral rail location on the 

bridge. According to this figure rails vibration is 

minimized if the rails centerline locates on the centerline 

of the cable bridge. 

Effects of the height and cross section dimensions of 

the tower on maximum amplitude of deck vibration are 

investigated in Figure 7. The results show that with 

decrease in tower cross sectional area, maximum rail 

displacement increases. Also according to this figure there 

is an optimum tower height in which the maximum rail 

displacement will be minimum. 

 

 
Fig. 6 Maximum amplitude of rail vibration respect to the lateral rail location 

 

 
Fig. 7 Effects of tower height on maximum displacement of rail 

 

Effects of number of cables and number of strands in 

each cable on maximum displacement of rail are shown in 

Figure 8. The results show that with increase of these 

parameters the rail displacement decrease and the bridge 

become more rigid. 

 

 
Fig. 8 Effects of number of cables and number of strands in each cable on maximum displacement of rail 
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Vertical displacement of the rail and Vertical position 

of wagon center of mass when the train passes over the 

bridge are presented in Figures 9 and 10, respectively. 

According to these figures maximum vibration of wagon 

position and rail displacement occur when the wagon 

reaches the middle of the bridge. 

 

 
Fig. 9 Vertical displacement of rail 

 

 
Fig. 10 Vertical position of wagon center of mass 

 

The comfort of the passenger coach in a running train 

can be assessed using the Sperling factor defined as: 
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  (49) 

 

Where f is the frequency in Hz; and F(f) is the 

modification coefficient of frequency. When vertical 

vibration is concerned, 
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(50) 

The allowable value of vehicle comfort is 3.0 for 

vertical vibrations [3].  

The acceleration response of the car body is random 

due to random rail irregularities and it contains a wide 

range of vibration frequencies. Thus, the Sperling comfort 

index is calculated for a series of frequencies based on the 

Fourier spectrum of the acceleration response time history. 

Acceleration response of the car body for different wagon 

speeds and line grades is presented in Figures 11 and 12. 

Using these results Sperling comfort index is 

calculated and presented in Figure 13. It can be seen that 

the Sperling index is less than 2, indicating that the ride 

comfort is satisfactory. 
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Fig. 11 Acceleration response of the car body for different wagon speeds 

 

 
Fig. 12 Acceleration response of the car body for different line grades 

 

 
Fig. 13 Sperling comfort index of the car body 

 

5. Validation of the model 

Example 1: To validate the model illustrated in this 

paper its predictions of the responses are compared with 

the responses are reported by Xu et al. [3] for the case 

where there are no cross wind forces. The vertical 

displacement response of bridge girder at mid-span 

evaluated by the current model and that of presented Xu et 

al. [3] are shown in Figures 14(a) and (b) respectively. 

According to these figures, the difference of the maximum 

amplitudes of the two results is about 5.5%. Therefore the 

prediction of the responses by the current model is in good 

agreement with the responses reported by Xu et al. [3]. 

Example 2: Yau and Yang [2] reported their results of 

the finite element simulation on the study of vertical 

interaction between the high speed trains and the cable 

bridges. In this research the train has been modeled as a 

series of sprung masse, the bridge deck and towers by 

nonlinear beam-column elements, and the stay cables by 

truss elements with Ernst’s equivalent modulus. Using the 

finite element procedure, the impact factor I has been 
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solved for the midpoint of the arrival span and departure 

span of the cable-stayed bridge. Figures 15 show the 

comparison of the impact factor I with respect to the speed 

parameter S from the reference and the calculated impact 

factor using the current model. It can be seen from Figures 

15(a) and (b), that the numerical results predicted by the 

present model are in reasonable agreement with the results 

calculated by finite element method. 

 
(a) 

 
(b) 

 
Fig. 14 Vertical displacement response of bridge girder at mid-span 

 
(a) 

 
(b) 

 
Fig. 15 Impact factor of the cable-stayed bridge 
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Example 3: The model developed by Au et al. [1] has 

been used for validation of the dynamic model of wagon 

and bridge interaction as reported in this paper. In that 

paper, the impact factor of deck moment was obtained 

using 2D model analyzed by the FEM. Figure 16 shows 

the comparison of the impact factor calculated using the 

current model with the results presented by Au et al. [1]. 

According to this figure the magnitude of the impact factor 

of the current model has a certain deviation compared with 

the values obtained by Au et al. [1] and the maximum 

error is about 5.8%. 

 

 
Fig. 16 Comparison of the impact factor for 2D and 3D models 

 

6. Conclusion 

In this paper a 3-D nonlinear models of cable bridge 

and wagon have been used to investigate the interaction of 

the cable bridge and train system. The current model has 

been validated using several numerical models reported in 

the literature by other researchers. Using this model; the 

effects of wagon velocity, lateral position of the rails and 

rail irregularities on wagon/bridge vibration and passenger 

comfort have been studied. 

List of Symbols 

A Cross section area α
 

Geometric slope 

C Fastener damping in 

vertical direction 
υ Poisson's ratio 

D
 

Flexural rigidity   Density 

E Module of elasticity ω Angular velocity 

F
 

Force ( )r Relative frame 

H Tower height ( )x 
Horizontal direction 

I Second moment of area ( )y 
Lateral direction 

K Fastener stiffness in 

vertical direction 
( )z 

Vertical direction 

L Length or distance between 

different elements 
( )b bogie 

N Number of. ( )c Cth cable 

a Bridge length ( )f Fth fastener 

b Bridge width ( )k
 
Kth rail or tower 

d Diameter of. ( )o Initial frame 

h Deck thickness ( )r Rail 

m Mass ( )tR Right side of tower 

v Velocity ( )rs

 
Rail to bridge deck

 

w Displacement ( )rw

 
Rail to wheel

 

( )s Bridge deck ( )ts Tower to bridge deck 

( )sr

 
Bridge deck to rail

 
( )w Wth wheel set 

( )st

 
Bridge deck to tower

 
( )wg Wagon 

( )t Tower ( )wr Wheel to rail 

( )tL Left side of tower   
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