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Abstract 

In this paper, a finite element model is developed for the fully hydro-mechanical analysis of hydraulic fracturing in 

partially saturated porous media. The model is derived from the framework of generalized Biot theory. The fracture 

propagation is governed by a cohesive fracture model. The flow within the fracture zone is modeled by the lubrication 

equation. The displacement of solid phase, and the pressure of wetting and non-wetting phases are considered as the main 

unknown parameters. Other variables are incorporated into the model using empirical relationships between saturation, 

permeability and capillary pressure. Zero-thickness element and conventional bulk element are used for propagating fracture 

and the surrounding media, respectively. The model is validated with respect to analytical solution of hydraulic fracture 

propagation problem in saturated media and then the problem is solved in semi-saturated media, considering the wetting and 

non-wetting pore fluid. 

Keywords: Hydraulic fracture, Partially saturated media, Cohesive fracture, Tow-phase fluid flow, Modeling. 

1. Introduction 

Modeling the hydraulic fractures in a porous medium 

is an important problem. Because these discontinuities 

affect the hydro-mechanical properties of porous media, 

which has practical applications in a broad range of 

engineering areas. Hydraulic fracturing is a commonly 

used method in petroleum engineering to enhance 

reservoir permeability and performance. 

Modeling the hydraulic fracture is a challenging 

problem because it involves several coupled phenomena 

such as coupling between the flow of wetting and non-

wetting phases in pore spaces, exchanging of fluid 

between the continuum porous media and the induced 

discontinuity, the deformation of solid phase, and 

opening or closing of the discontinuity. 

Issues related to porous medium have been studied by 

various researchers; Ghasemzadeh [1] formulated 

mathematically solute transport with considering heat 

and water flow in deformable porous media, Luo [2] 

developed a new piping model in the framework of 

continuum mixture theory. He assumed that porous 

media are comprised of solid skeleton phase, fluid phase 

and fluidized fine particles phase.  
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Ashayeri et al [3] presented time domain fundamental 

solutions for the extended Biot's dynamic formulations of 

two-dimensional (2D) unsaturated poroelasticity. They 

considered unsaturated porous media as a porous media 

in which the voids are saturated with two immiscible 

fluids, i.e. liquid and gas. Attia et al [4] studied the 

unsteady flow in porous medium of a viscous 

incompressible fluid bounded by two parallel porous 

plates with heat transfer. 

Problems which deal with fluid flow in a discontinuity 

and its surrounding porous media have been studied by 

using different methods; Simoni and Secchi [5] introduced 

the double-node interface element in saturated porous 

media, Schrefler et al. [6] and Secchi et al. [7] modeled the 

hydraulic fracture in saturated porous media with mesh 

adaption technique, Segura and Carol [8] proposed a 

model for the saturated porous media using zero-thickness 

elements to model discontinuity, Rethore et al [9] 

presented the fluid flow in unsaturated porous media with 

passive gas phase, taking into account changes in the 

permeability due to the progressive damage evolution 

inside the cohesive zone. Adachi and Detournay [10] 

obtained the semi-analytic asymptotic solutions 

corresponding to small and large time for hydraulic 

fracture problems. Chen et al [11] established a finite 

element model based on the pore pressure cohesive finite 

elements to investigate the propagation of a penny-shaped 

hydraulic fracture in an infinite elastic medium, and 

investigated the effect of cohesive material parameters and 

fluid viscosity on the hydraulic fracture behavior. 

Lecampion [12] investigated the extended finite element 
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method for the solution of hydraulic fracture problems and 

introduced special tip functions such as encapsulating tip 

asymptotic, which is typically encountered in hydraulic 

fractures. Kovalyshen [13] studied the large-scale 3D 

diffusion around the fracture and its associated poroelastic 

effects on fracture propagation. Sarris and Papanastasiou 

[14] studied the importance of the cohesive zone in the 

modeling of a fluid driven fracture under plain strain 

conditions. Barani et al. [15] modeled the cohesive crack 

growth in partially saturated media, and Khoei et al. [16] 

developed a formulation for double-node interface element 

in dynamic fracture propagation. Khoei and Haghighat 

[17] and also Mohamadnejad and Khoei [18] modeled the 

fluid flow respectively in saturated and partially saturated 

porous media with weak discontinuity using extended 

finite element method. Carrier and Granet [19] 

demonstrated the ability of cohesive zone model in 

simulating the hydraulic fracture in the four limiting 

propagation regimes in which toughness-fracture storage, 

toughness-leak-off, viscosity-fracture storage and 

viscosity-leak-off dominated. Chen [20] investigated some 

important issues such as mesh transition and far-field 

boundary approximation in the cohesive finite element 

model of the hydraulic fracturing process. Sarris and 

Papanastasiou [21] investigated the main parameters that 

influence the propagation of a fluid-driven fracture in a 

poroelastoplastic continuum. These parameters include the 

cohesive zone, the stress anisotropy and the pore pressure 

field. Ru et al [22] investigated the extended finite element 

method for the solution of the plane strain problem of a 

hydraulic fracture propagating in an impermeable elastic 

medium. 

In all of the works mentioned above, the gas phase is 

assumed to be negligible. It should also be stated that 

Mohamadnejad and Khoei [23] modeled the cohesive 

crack growth in partially saturated porous media using 

extended finite element method. 

In this paper, a numerical method is described to model 

the hydro-mechanical progress both of the fracture and 

porous media in the finite element analysis framework. For 

this work, a zero-thickness element is developed to model 

the discontinuity. Fracture propagation is governed by a 

cohesive law.In order to describe the fracture and partially 

saturated porous media, momentum and mass balance 

equation with Darcy law for each fluid phase are 

employed. The standard Galerkin method and Newmark 

scheme are used for discretization in space and time 

respectively. The hydraulic fracture problem in saturated 

media is solved to confirm accuracy of the present model. 

Finally, taking gas pressure into account, this problem is 

evaluated in partially saturated porous media. 

2. Physical Model 

The semi-saturated porous medium is modeled as a 

mixture of solid skeleton, water (as wetting phase) and gas 

(as non-wetting phases). The fluid flow through the porous 

medium is considered immiscible and it is assumed that 

there is no phase change and no mass transfer between 

fluid phases. 

The water pressure 𝑝𝑤  the gas pressure 𝑝𝑔  and the 

displacement of solid skeleton are the main variables and 

other variables are incorporated in the model using 

empirical relationship between water saturation, 

permeability and capillary pressure. 

The capillary pressure 𝑝𝑐  between two fluid phases is 

defined as the difference between the water pressure and 

the gas pressure:  

 

c g wP P P 
 

(1) 

 

In partially saturated porous media, the voids of 

skeleton are filled partly with water and partly with gas 

and therefore degree of saturation of water 𝑆𝑤  and gas 𝑆𝑔  

always sum to unity: 

 

1w gS S   (2) 

 

In the theory of porous media, modified effective stress 

is an essential concept for the deformation of solid 

skeleton: 

 

mp      (3) 

 

In which   is total stress vector,    is the modified 

effective stress vector, m  is the identity vector defined as 

 1 1 0
T

for two dimensional case, p is the mean 

pressure of fluid surrounding the grains, which is given by 

averaging technique 
w w g gp S p S p  , and  is the 

Biot constant which depends on the material type and 

defined as 1 1t

s

K
K

    , where 
tK  and 

sK  denote the 

bulk modules of the porous medium and solid particles, 

respectively. 

The constitutive relationship for the solid skeleton is 

expressed as 

 

d D d    (4) 

 

Where D  is tangential constitutive matrix defined by 

suitable constitutive law. d   and d  are the modified 

effective stress increment and strain increment, 

respectively. 

3. Governing Equation of Multiphase Porous 

Media 

In order to describe the behavior of partially saturated 

porous media, the linear momentum balance equation and 

fluids mass balance equation are used. Neglecting relative 

acceleration of fluid phases with respect to acceleration 

term of the solid phase, the linear momentum balance 

equation for the multiphase porous media can be written as 

 

. 0T b u       (5) 

 

 [
 D

O
I:

 1
0.

22
06

8/
IJ

C
E

.1
3.

3.
18

5 
] 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ce
.iu

st
.a

c.
ir

 o
n 

20
25

-0
7-

18
 ]

 

                             2 / 10

http://dx.doi.org/10.22068/IJCE.13.3.185
https://ijce.iust.ac.ir/article-1-1230-en.html


International Journal of Civil Engineering, Vol. 13, Nos. 3&4B, Transaction B: Geotechnical Engineering, September & December 2015 187 

 

Where u  is the acceleration vector of solid phase, b is 

body force per unit mass and   indicates the average 

density of total mixture defined as

(1 ) ( )s w w g gn n S S       , in which n  denotes 

porosity, ,s w   and 
g  are the densities of the solid 

phase, water and gas fluid phases, respectively, and 
denotes del operator. 

 The mass balance equation for each fluid phase is 

combined with the general form of Darcy’s law to describe 

the flow behavior of the porous medium under the 

influence of solid skeleton deformation [24]. 

 

2( )

( ) [ ( ( ))] 0

g Tw w
w w g w

s w s

Tw rw
w w w g w w

s s w

pnS pn n u
S S S S m L

K K t K t t

S Kkn n
S p S p n p b u

K K t

 


 




  
  

  

 
       



 

(6) 
2( )

( ) [ ( ( ))] 0

g g Tw
g g w g

s g s

g rgT

g w w g g g

s s g

nS p pn n u
S S S S m L

K K t K t t

S Kkn n
S p S p n p b u

K K t

 


 




   
  

  

 
       



 

 

where ,s wK K  and 
gK  are the bulk modulus of solid 

phase, water and gas fluid phases, respectively. 

K  denotes the intrinsic permeability which is 

assumed to be isotropic, ,rw rgk k are the relative 

permeability of water and gas fluid phases which depends 

on the degree of saturation through suitable experimental 

function and ,w g   denote the dynamic viscosity of 

water and gas phases, respectively, the differential 

operator L  is defined as: 

 

0 0 0

0 0 0

0 0 0

T

x y z

L
y x z

z y x

   
   

 
      

 
   
   

 

 

Derivative of the saturation degree with respect to the 

time is expressed as follows: 

 

( )
gw w c w

s

c

w
s

c

PS S P P
n n C

t P t t t

S
C n

P

   
  

    






 
(7) 

 

Numerical solution of a field problem requires the 

knowledge of the corresponding value of the field variable 

associated with the initial and boundary conditions (Fig. 

1). The initial boundary value of displacement and 

pressure field are specified as follows: 

 
0

0

0

w w

g g

u

w p

g p

u u on

p p on

p p on

 

 

 
               

0at t   
(8) 

Which are in general obtained by means of a preliminary 

static solution to guarantee the satisfaction of the governing 

equation at t=0. In relation (8), 
u , 

wp  and 
gp
 are parts 

of external boundary with prescribed displacement, water 

pressure and gas pressure, respectively. 

 

 
Fig. 1 Boundary conditions of the body  

 

The natural boundary condition is imposed on the 

boundary as prescribed traction or external displacement 

for the displacement field as: 

 

ˆ ;i i u ij i j tu u on n t on     (9) 

 

where 
t  is a part of external boundary with specified 

traction and 
jt is the prescribed traction applied on the 

boundary 
t , and 

in  is the unit outward normal vector to 

the external boundary 
t , and 

u t     

The boundary condition for water and gas pressure 

field are as: 

 

;

( gradp ( )) .n q ;

g

g

g g p

T

g g g g qg

for gas pressure

p p on

K
b u on 



 

    

 

;

( gradp ( )) .n q ;

w

w

w w p

T

w w w w q

w

for water pressure

p p on

K
b u on 



 

    

 
(10) 

 

where 
gq  and 

gq  are parts of external boundary with 

specified gas and water normal outflow, respectively. q g  

and qw  are the prescribed outflow rates of the porous 

fluid imposed on permeable boundaries 
gq  and 

wq , 

respectively, and 
w w g gp q p q       .

 
For numerical solution, Eqs. (5)-(6) are discretized in 

space by finite Galerkin method and in time by Newmark 

scheme. The unknown variables are expressed in terms of 

their nodal values by means of global shape functions as: 

 

; ;u p p

w w g gu N u p N p p N p    (11) 
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Based on the standard Galerkin technique Eqs.(5)-(6) 

are transferred into a set of matrix form as:  

 
T

sw w sg g u

gT w
sw ww wg ww w w

gT w
sg gw gg gg g g

Mu B d C p C p f

PPu
C P C H P f

t t t

PPu
C C P H P f

t t t




   


   

  


   

  


 

(12) 

 

Where B is the strain-displacement matrix. The 

definition of all the coefficient matrices and the load and 

flow vectors are listed in Appendix A. 

The Newmark scheme adopted for time integration, the 

first and second order time derivates of the variable are 

written as a function of the solution at previous step and 

their current increment, 

 
1 1

0 2 3

1 1

1 4 5

1 1

0 2 3

1 1

1 4 5

( ) ,

( ) ,

(p ) ,

(p ) ,

n n n n n

n n n n n

n n n n n

n n n n n

u a u u a u a u

u a u u a u a u

p a p a p a p

p a p a p a p

    

    

 

 

 

 

   

   

   

   

,w g   
(13) 

 

where in above equations: 

 

0 1 2 3 4 52

1 1 1
, , , 1, 1, ( 1)

. . . 2 2
a a a a a a t

t t t

  

     
         

    
 

t  is time increment; furthermore,   and   are the 

Newmark parameters. To guarantee the unconditional 

stability of the time integration procedure, the Newmark 

parameter must be chosen as 20.25(0.5 )   , 0.5  . 

4. Formulation of Cohesive Fracture Zone 

The main concept of cohesive zone is based on the fact 

that in the cohesive zone, called fictitious process zone 

(FPZ), the stress can be transferred through the fictitious 

crack sides. In this model, if the crack tip stress reaches the 

tensile strength of material, the fictitious crack grows. By 

opening the crack, the crack surface does not become 

stress free, but its stress decreases by increasing the crack 

width according to a cohesive law. Various traction-

separation laws have been used by researchers in the 

modeling of cohesive material. In this study, a bilinear 

cohesive law, which was originally proposed by Espinosa 

and Zavattier [25] is used. The fracturing material in the 

zone of fractured media undergoes the mixed mode crack 

opening, in which the crack moves along an interface 

separating two solid openings. In this model, the effective 

traction and effective displacement are resolved into 

normal and tangential component as: 

 
2 2

2 2

e n s

e n s

t t t

  

 

 

 
(14) 

where et  
is the effective traction, nt and st are the 

normal and shear traction, respectively; 
e  

is the effective 

displacement; furthermore, n and s are the normal 

displacement and shear sliding of fracture surfaces. The 

non-dimensional effective displacement is defined as [26]: 

 

2 2( ) ( )n s
e

c c

 


 
   

(15) 

 

where 
c  denotes the critical displacement that is 

proportional to complete separation, i.e. zero traction. 

Fig. 2 shows the bilinear cohesive law in terms of 

normalized opening tractions and normalized opening 

displacement. The pre-peak region represents the elastic part 

of the intrinsic cohesive law, whereas the softening portion 

after the peak load accounts for the damage occurring in the 

fracturing process zone. The parameter 
cr  is a dimensionless 

displacement which corresponds to the maximum traction and 

is set to a small value to obtain more exact result. The normal 

and shear tractions can be obtained as: 

 

if                    c n
e cr

cr c

nt
 

 
 

 
  

 

 

if (loading)
1

           
1

c e n
e cr

e cr c

nt
  

 
  

 
  

  

 

1

1

  if (unloading)
1

         
1

c e n
e cr

cr ce

nt
 

 
  

 
  

  

 

(16) 

if                    c s
e cr

cr c

st
 

 
 

 
  

 

 

  if (loading)
1

          
1

c e s
e cr

e cr c

st
  

 
  

 
  

  

 

1

1

if (unloading)
1

           
1

c e s
e cr

cr ce

st
 

 
  

 
  

  

 

(17) 

 

 
Fig. 2 a bilinear cohesive law in the term of normalized effective 

displacement and normalized effective traction 

 

where c  is the material strength and 1e  is the non-

dimensional displacement just before unloading. The value 

of critical displacement is usually computed by the 
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cohesive fracture energy 
cG  assumed as a material 

property and computed by equating the area under the 

displacement-traction curve, namely 1

2
c c cG   . 

In order to derive the components of cohesive material 

matrix 
fC  for the fracture zone, it is required to 

differentiate traction with respect to normal and shear 

displacements [26]. Hence, the components of cohesive 

material matrix 
fC  for 

e cr   are governed by 

 

0

0

cs s

cr cs nss sn

f

ns nn cn n

s n cr c

t t

C C

C C t t



  



   

    
    
     
    
  

    

C
 

(18) 

 

If 
e cr  , the components of 

fC  matrix in the case 

of loading are given by  

 

2
2

2 2 3 4

3 2 2

3 2 2

1 1
(1 )

1 1

1

1

1

1

s s

s nss sn

f

ns nn n n

s n

c c s c c s
e

cr e c cr e c e c

c c s n

cr e c c

c c s n

cr e c c

t t

C C

C C t t

 

 

     


       

   

   

   

   

  
   
   
   
 
  

    
      

     
 

         

  
  

   

C

2
2

2 2 3 4

1 1
(1 )

1 1

c c n c c n
e

cr e c cr e c e c

     


       






             

 

(19) 

 

And in the case of unloading, they are given by 
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t t
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C C t t
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 

 

  

 

  

  
   
   
   
 
  

  
  

  

 

   
   

C
 

(20) 

5. FE Formulation of Fractured Media 

In order to perform the finite element model for 

fracture media, equilibrium equation are implemented 

similar to section 0. The momentum balance of fractured 

media can be written according to the cohesive fracture 

behavior similar to Eq.(5) as: 

 

. 0T b u       (21) 

 

The balance of fluid mass for the fractured media can 

be rewritten according to Eq.(6) as: 

sn( ( ) ( ( ) )

1
0

m m
r f w

m

p z
k k u b

l l l

nS dp Sw

w t K dt t



 




 

   
  


  

 

 

(22) 

, ,i j s n , ,w g   

 

where w is the fracture aperture, rk   is the relative 

permeability of each fluid phase and 
sn( )fk  is the fracture 

permeability tensor defined as 0

0

s

f

n

k
k

k

 
  
 

in which sk

and nk are the longitudinal and transvers permeability 

coefficients, respectively. 

Eqs. (21)-(22) are discretized in space by using a 

Galerkin method as: 

 

w g uT sw sgMu K u C p C p f     

w

gT w
sw ww sg ww w

PPu
C P C H P f

t t t


   

    

g

gT w
sg gw gg gg g

PPu
C C P H P f

t t t


   

  
 

(23) 

 

where the cohesive stiffness matrix TK  is defined as

T T

f f fB D B d


 , in which 
f fD wC , with the cohesive 

material matrix 
fC  is defined in Eqs.(18-20). Calculation 

of TK  has been given in detail in [26] other matrices are 

listed in Appendix B. 

6. Numerical Simulation Results 

In order to demonstrate a part of the wide range of 

problems that can be solved by the present approach and to 

illustrate the performance of the computational algorithm in 

the modeling of partially saturated porous media problem, 

the hydraulically driven fracture propagation problem is 

solved. First, in order to verify the accuracy of the finite 

element solution, this problem is presented against an 

analytical solution assuming saturated condition, and then it 

is solved in partially saturated condition. 

6.1. Hydraulic fracture modeling in statured media 

To evaluate the accuracy of the finite element solution 

of crack growth in statured porous media a horizontal 

section plane strain model is considered. An analytical 

solution for this problem was obtained by Spence and 

Sharp [27] and Geertsma and Klerk [28] and used here for 

comparison. A numerical solution for this example was 

carried out by Boone and Ingraffea [29], in which a finite 

element method was applied for the mechanical problem 

and a finite difference method was used for flow analysis 

through the fracture In Fig. 3 the geometry, boundary 

condition and finite element mesh and the material 

properties are presented in Table 1.Triangular elements 

with linear interpolation functions are used. An initial 
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crack is assumed at the borehole and constant flow rate of 

0.0001𝑚
3

𝑠  is imposed at the crack mouth which causes 

the initial crack propagation. The tensile strength of the 

material is assumed 0.5MPa. When the maximum effective 

stress at the crack tip reaches the tensile strength of the 

material, a new node is inserted at the crack tip and the 

mesh is modified accordingly so that the crack propagates 

perpendicular to the maximum effective stress.  

 

 
Fig. 3 the geometry and boundary condition of hydraulic fracture 

problem 

 

In Fig. 4 the variation of crack mouth pressure with 

time is plotted and it is compared with analytical solution 

[27,28]. As can be seen from this figure, the present 

simulation result is in good agreement with analytical 

solution. Fig. 5 shows the contour of maximum effective 

stress at 1.0, 4.0, 7.0 and 10 s. In Fig. 6 the water pressure 

at t=5 and 10 s are presented. 

Table 1 material properties for hydraulic fracturing problem 

15.96E Mpa  Elasticity modulus 

0.79   Biot coefficient 

0.2   Poisson’s ratio 

0.19n   porosity 

32000s

kg
m

   Solid phase density 

31000w

kg
m

   Water density 

31.2g

kg
m

  Gas density 

36sK GPa  Bulk modulus of solid phase 

3wK GPa  Bulk modulus of water 

0.1gK MPa  Bulk modulus of gas 
15 26 10k m   Intrinsic permeability 

30.1 10w Pas    Dynamic viscosity of water 
51.8 10 g Pas

 Dynamic viscosity of gas 

0atmp kPa  Atmospheric pressure 

 

 
Fig. 4 the variation of crack mouth pressure with time and 

compare with analytical solution [28,29] 

 

 

 
T=1s 

 
T=4s 

 
 

T=7s 
 

T=10s 
Fig. 5 contour of maximum effective stress in various time steps (all dimensions in Pa) 
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T=5s 

 
T=10s  

Fig. 6 contour of water pressure at various time steps (all dimensions in Pa) 

 

6.2. Hydraulic fracture modeling in partially statured 

porous media 

In this section, the hydraulic fracture example is 

considered in unsaturated condition. The initial saturation 

is assumed 0.93, which is proportional with initial water 

pressure -100000Pa and initial gas pressure -10 Pa. In this 

example, the following water saturation-capillary pressure 

relation given by Brooks [30] has been used: 

 

21 ( )
40 9.81 980

c
w

P
S  

  
 (24) 

 

The relation between water saturation-relative 

permeability is defined by VanGenuchten [31] as 

 

3 3

3

2

2

1

(1 ) (1 )

w rw
eff

rw

rg eff

rw eff eff

S S
S

S

K S

K S S


















  

 (25) 

 

where the residual water saturation 0.2rwS  , the pore 

size distribution index 3   and 
effS

 
denote the 

effective water saturation. 

Fig. 7 shows the variation of crack mouth water 

pressure with time. In Fig. 8 and 9 the results of water 

pressure and saturation are presented at t=25, 50 and 200s. 

Fig. 10 shows the contour of gas pressure at t=25, 50 and 

200s. As shown in this figure, a significant gas pressure 

develops during hydraulic fracturing process in the 

unsaturated media. 

 

 
Fig. 7 variation of crack mouth water pressure with time 

 

 
   

 T=200s T=50s T=25s 
Fig. 8 contour of water pressure at various time steps (all dimensions in Pa) 
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 T=200s T=50s T=25s 

Fig. 9 contour of water saturation at various time steps 

 

    

 T=200s T=50s T=25s 
Fig. 10 contour of gas pressure at various time steps (all dimensions in Pa) 

 

7. Conclusion 

In this paper, a finite element model has been 

developed for numerical solution of cohesive fracture in 

partially saturated porous media, considering two phase 

flow. In order to describe the behavior of multiphase 

porous media the governing equation including 

momentum balance equation and fluid mass balance 

equation was applied for each fluid phase. A spatial 

discretization by means of Galerkin method in term of 

solid displacement, water and gas pressure and a time 

discretization by general Newmark method have been used 

to yield the final system of equation. The double nodded 

zero-thickness cohesive interface element was employed 

to present fracture behavior. The governing equations were 

rewritten for fracture media to describe the hydro-

mechanical behavior of the fracturing multiphase media. 

In order to demonstrate the capability of proposed 

computational algorithm, hydraulic fracture problem was 

analyzed. The hydraulically driven fracture propagation in 

saturated condition was solved to verify the algorithm. The 

example it has been solved with initial saturation 0.93, and 

the water pressure, gas pressure and water saturation 

contour for various time steps have been presented. A 

significant amount for gas pressure was obtained in 

unsaturated media, as a result of a complete analysis of the 

hydraulic fracture problem. 

Appendix A 

The coefficient matrices in the set of discretized 

governing equation (12) are defined as follows: 

 

( (
t

u u ubd td
 

   
T T

f N ) N )  

( u uM N d


 
T

N )  

p

sw wC B S mN d


 
T  
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Appendix B 

The coefficient matrices in the set of discretized 

governing equation (23) are defined as follows: 
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