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1. Introduction

High strength to weight ratio of composite
materials has found wide industrial and
engineering applications in recent years. They
can be applied in the shape of thin layers while
remain very imperfection sensitive.
Consequently, their orthotropic fracture
behaviour has turned into an interesting active
research subject. Some analytical investigation
have been reported on the fracture behaviour of
composite materials such as the pioneering one
by Muskelishvili [1], Sih et al. [2],  Tupholme
[3], Viola et al. [4], Lim et al. [5] and Nobile and
Carloni [6].

Owing to the fact that analytical methods are
not considered as feasible methods for solving
arbitrary problems, numerical methods such as
the boundary element method [7], the finite
element method [8], and meshless methods [9]

have been widely expanded and utilized in
engineering applications. In many meshless
methods, simulation of arbitrary geometries and
boundaries is so cumbersome.  However, the
finite element method is more convenient and
applicable because of its ability in modelling
general boundary conditions, loadings, materials
and geometries. One of its main drawbacks is
that elements associated with a crack must
conform to crack faces. Furthermore, remeshing
techniques are required to follow crack
propagation patterns. To improve these
drawbacks in modelling discontinuities,
Belytschko and Black [10] combined FEM with
the partition of unity (proposed by Melenk and
Babuška [11], Duarte and Oden [12]), soon to be
known as the eXtended Finite Element Method
(XFEM). In the XFEM, the finite element
approximation is enriched with appropriate
functions extracted from the fracture analysis
around a crack-tip. The main advantage of the
XFEM is its capability in modelling
discontinuities independently, so the mesh is
prepared without considering the existence of
discontinuities. In 2D isotropic media, Mo?s [13]
and Dolbow [14] proposed an improvement to
the work by Belytschko [10], and Sukumar [15]
extended the method to 3D problems. A
comprehensive review and discussion on the
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subject can be found in Mohammadi [16].

In the present study, a new set of enrichment
functions is derived to simulate orthotropic
cracked media using the extended finite element
method. Crack-tip enrichment functions used in
the extended finite element method are derived
from already developed complex functions that
determine the stress and displacement fields
around a crack-tip. In this paper, first, essential
formulations of orthotropic materials are
reviewed. Then, the extended finite element
method is concisely examined and the crack-tip
(near-tip) enrichment functions are obtained.
Thereafter, a method used for evaluating stress
intensity factors is presented. Finally, in order to
examine the robustness and validity of the
proposed method, it is used to analyze various
numerical examples and to evaluate mixed mode
stress intensity factors and to compare them with
available results.

2. Orthotropic Media

The strain-stress equation for an orthotropic
medium can be defined as

(1)

where C is the orthotropic compliance matrix.
Viola et al. [4] developed a methodology of
transformation in order to express the
formulation in terms of complex functions. As a
result, the set of equations for an in-plane static
problem can be expressed as [4]

(2a)

(2b)

Where

(3) 

Eigenvalues λ of the matrix A can be obtained
by 

(4)  

with

,   (5)  

also defining,
(6)  

(7)  

(8)  

In order to extract the necessary crack tip
enrichment functions, near tip displacement
fields have to be evaluated for a general traction
free crack within an infinite orthotropic plate
subjected to uniform biaxial loads at infinity.
Figure 1 shows the crack geometry, Cartesian and
polar co-ordinates and the loading conditions,
consisting of normal stresses  and  as well as
shear load τ.

Neglecting the velocity of the crack
propagation for the present static case, the basic
solution proposed by Viola et al. [4] results in the
following displacement fields in x ad y directions

(9)
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(10)

where

(11)

(12)

and

(13)
with

(14)

and

(15) 

(16)

It is noted that the displacement fields in Eqs.
(9-10) are only valid for near crack-tip region:
r/a<1 .

3. Extended Finite Element Method

X-FEM was originally proposed by Belytschko
and Black [10] and Dolbow [14] and later
modified and applied to various crack analysis
problems by Sukumar et al. [15]. A numerical X-
FEM model is constructed by dividing the model
into two parts; first part is generating a mesh for
the domain geometry (neglecting the existence of
any crack or other discontinuities) and second
part is enriching finite element approximation by
appropriate functions for modeling any
imperfections.

Consider x is a point of R2 space in the finite
element model and S is a set of nodes defined as
S={n1,n2,...nm}, m is the number of nodes in the
element. The enriched approximation of
displacement can be defined by:

(17)

where uI is the classical nodal degree of
freedom in FEM, aJ is the added set of degrees of
displacement freedom to the standard finite
element model, φI is the shape function
associated to node I, ψ(x) is the enrichment
function defined over the domain Sψ :
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Fig.1 Crack geometry, loading condition and global and
local co-ordinates.
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According to the type of discontinuity, ψ(x) can
be chosen by applying its associated analytical
solutions.

For modeling an arbitrary crack, Eq. (17) can
be re-written as [14,16]:

(18)

where S1 and S2 are the domains in which the
crack-tip is in its support domain for tip 1 and tip
2, respectively, SH is the domain associated to
crack length discontinuity, bJ and  ck

l are vectors
of additional nodal degrees of freedom, Fl

1(x) and
Fl

2(x) are near-tip branch enrichment functions
derived from the two-dimensional asymptotic
displacement field near crack-tip and H(x) is the
Heaviside function defined as  the signed
function in this study; the value of +1 if the point
is on the positive side of the crack and –1,
otherwise:

(19)

Nodes that belong to S1 or S2 are enriched with
the crack-tip enrichment functions F1(x) and
F2(x) respectively, and those which contain the
crack within their support domain and do not
belong to S1 or S2 are enriched with the
Heaviside function H(x). 

Crack-tip enrichment functions are obtained
from the analytical solutions (9-10) for
displacement in the vicinity of a crack-tip: [17]

(20)

where θ and gj(θ)  have been defined in
equations (15) and (16).

In Eq. (20), the third and forth functions in the
right-hand side of the equation are discontinuous
across the crack faces while the others remain
continuous.  

Developed enrichment functions (20) can be
applied for orthotropic materials and can not be
directly used for isotropic problems, as they may
involve 0/0 or number/0 operations.
Mathematical simplifications to remove the
ambiguous solutions have been performed to
transform (20) into alternative functions for the
limiting case of isotropic problems. It is,
however, always easier to use the original
isotropic near tip enrichment functions.

The discrete system of linear equations in the
XFEM in global form can be written as [17]

KU=F (21)

where K, U and F are the stiffness matrix, the
vector of degrees of nodal freedom (for both
classical and enriched ones) and the vector of
external forces, respectively. The global stiffness
matrix K is calculated by an assembly procedure
for each element defined as

(22)

where
(23)

and B is the matrix of shape function
derivatives,

(24)

Fig.2 Influence (support) domain for node J in an
arbitrary finite element mesh
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(25)

(26)

(27)

and the force vector,

(28)

where

(29)

(30)  

where Ω e is an element, Ω h is an element with
a crack lying along its edges, cΩ denotes the
boundary of the domain Ω , t− is the traction and b
is the body force.

Because the ordinary Gaussian rules do not
accurately calculate the integration of enrichment
functions in elements cut by a crack, the element
has to be subdivided into sub-triangles or sub-
quads, as depicted in Figure 3. In this method, a
node is enriched if there are Gaussian points at
both sides of the crack in the influence domain of
the crack. Figure 3b shows a mesh that contains a
crack while the second method was applied. 

Although the crack “a” cuts the element, node J
must not be enriched because there is no
Gaussian point above the crack. In contrary, node
J has to be enriched for crack “b”. 

4. Numerical Examples

In this section some examples are presented.
For comparing the results, Stress Intensity
Factors (SIFs) and J-integral are calculated and

compared. These parameters are among the best
parameters for determination of the path of crack
propagation. In this section, SIFs and J-integral
are obtained by the method proposed by Kim and
Paulino [18]. 

4.1. Tensile plate with a central crack

In order to verify the proposed approach, first a
classical isotropic rectangular plate with a central
crack is considered (E11=E22). The infinite tensile
plate is discretized by a structured finite element
mesh. Different numbers of finite elements
(24*50 and 48*90 mesh) are used to assess the
accuracy of results.

Figure 5 shows the crack tip and heaviside
enrichment nodes. Elements that are fully cut by
a crack are enriched by the heaviside enrichment,
whereas elements containing a crack tip are
enriched by the crack tip enrichment functions
(20).

Figure 6 illustrates the J integral contours
adopted for the coarse and fine finite element
meshes. Element matrices are integrated over the
set of Gaussian points as depicted in Figure 7. 

Table 1 compares the normalized stress
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intensity factors for various meshes as well as
different ratios of crack length a to plate width w.
The computed errors show a close agreement
between the numerical results and the exact
solution according to the Irwin’s classical
solution. Figure 8 depicts the distribution of σxx
and σyy stress components, with a clear indication
of concentrated stress field.

In the next stage an orthotropic plate, with a
crack aligned along the axis of orthotropy in the
center of the plate is studied. At edges parallel to
the crack, a constant traction (σ =1) is applied.
Geometry and boundary conditions for the
problem are similar to Figure 4.

In the FEM discretization, about 2500 four-
node quadrilateral elements are used (Figure 9).

203S.H. Ebrahimi, S.Mohammadi, A.Asadpour

Fig.4 Geometry of the anisotropic tensile plate.

Fig.5 Crack tip (square) and Heaviside (circle) enrichment
nodes.

a)  24*50 mesh

b) 48*90 mesh

Fig.6 Contour domains for evaluation of the J integral on
each crack tip.

Fig.7 Contour domains for evaluation of the J integral on
each crack tip.

a) xx� a) yy�

Fig. 8 Stress distribution

Fig. 9 The discretizated adaptive finite element model.

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ce
.iu

st
.a

c.
ir

 o
n 

20
24

-0
8-

28
 ]

 

                             6 / 10

http://ijce.iust.ac.ir/article-1-179-en.html


The size of crack-tip element is one-sixteenth of
the crack length, i.e. he/a=1/8. Stress intensity
factors are calculated and compared with those
reported by Kim and Paulino [18] (                        ),
using a total of 2001 elements and 5851 nodes, as
shown in Table 2.

Table 2 shows the rate of convergence for
various integration domain sizes (rd) for
enrichment with and without crack-tip
enrichment functions. As provided in Table 2
small domain sizes can not be used without the
inclusion of crack-tip enrichment functions and
in order to compensate for the local effects of the
crack-tip, larger domains are preferred.

By including crack-tip enrichment functions,
higher rates of convergence are anticipated, even
for smaller domain sizes around the crack-tip.
Numerical results show that when rd /a=0.5, the
values of SIFs are independent from the domain
size.

Table 3 compares the results for investigating
the effect of number of elements in the numerical
analysis by utilizing a number of coarse and fine
finite elements. In this table, the results for SIFs

are compared when isotropic enrichment
functions (Dolbow [14]) and the proposed
orthotropic method are applied; showing a
difference less than half a percent for this
particular example.

4.2. A single inclined edge crack specimen

The method proposed in this study is applied to
a single edge notched tensile specimen.
Geometry of the specimen is shown in Figure 10a
and the material properties are defined in Table 4.
The finite element mesh of the model consists of
1920 4-noded quadrilateral elements. The model
has 14×40 fine elements with 0.075×0.075 cm
around the crack and 32×40 elements 0.075×0.15
cm far from the crack (Figure 10b). For the
numerical approach, a 2×2 Gauss quadrature is
applied for evaluating classical finite element
parameters, while for enriched nodes belong to
elements that contain a crack, elements are
partitioned into 5 sections in both directions and
in each section a 6×6 Gauss quadrature rule is
utilized. 

Mixed mode stress intensity factors have to be

204 International Journal of Civil Engineerng. Vol. 6, No. 3, September 2008

wa / Irwin  Mesh 24*50 Mesh 48*90 

a
K I

�� a
K I

��
Error 

a
K I

��
Error  

1/8. 1.0404 1.0329 -0.72% 1.0346 -0.56%

1/6. 1.0746 1.0662 -0.78% 1.0683 -0.59%

1/4. 1.1892 1.1796 -0.81% 1.1825 -0.56% 

contour size 
(rd/a) 

Full enrichment Without crack-tip function

2 1.019 1.016 

0.5 1.018 1.016 

0.25 1.019 0.970 

Table 1 Normalized values of stress intensity factors for various discretization and domain 

Table 2 Comparison of normalized SIF                     with and without crack-tip functions.aKK II πσ=

Φ Jernkvist [19] XFEM 
IK IIK IK error IIK error 

0 3.028 0.0 2.960  2.2 0.0  0.0 
15 3.033 0.359 3.000  1.1 0.361  0.6 
30 3.020 0.685 3.120  3.3 0.691  0.9 
45 2.806 0.864 3.029  7.9 0.908  5.1 

Table 3 Comparison of normalized SIF                      for the isotropic and orthotropic enrichments. aKK II πσ=

997.0aIKIK =πσ=
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evaluated because the crack has an inclination
with respect to the line of symmetry. The results
are compared in Table 5. The calculated SIFs are
based on the converged values corresponding to
the case of eight elements far from the crack-tip
position. The stress intensity factors reported by
Jernkvist [19] were correlated to the load through
the usual procedure of identifying displacements
of nodal points on the crack surfaces close to the
crack-tip by six crack inclinations ϕ in the range
from 0° to 45°.

According to Table 5, while the stress intensity
factors are only different within    1-8% for mode
I, they are different within  0-5% for mode II.
When the crack inclination is low, they are more
similar and the maximum differences for the two
first inclinations are about 1% and 0.5% for mode
I and II, respectively.

Also according to the same table, there is a

trend of increasing error as the crack inclination
approaches to 45 degrees. It is not a radical
change in the level of error, as more or less
similar trends are observed in other close angles.

5. Conclusion

In this paper, the problem of modeling cracks in
orthotropic media was investigated by the
extended finite element approach. The XFEM
methodology the finite element model is
discretized without any discontinuities. Then the
orthotropic asymptotic crack-tip displacement
fields as well as Heaviside discontinuous
function are added to enrich the finite element
approximation using the framework of partition
of unity. One of the main advantages is to avoid
any explicit meshing of the crack surfaces.
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a) Geometry b) Finite element model 

Fig. 10 Specimen geometry of a rectangular plate with single notched cracked.

E1=0.81 GPa v12=0.56

E2=0.64 GPa v21=0.44

G12=0.63 GPa

Φ Jernkvist [19] XFEM 
IK IIK IK error IIK error 

0 3.028 0.0 2.960  2.2 0.0  0.0 
15 3.033 0.359 3.000  1.1 0.361  0.6 
30 3.020 0.685 3.120  3.3 0.691  0.9 
45 2.806 0.864 3.029  7.9 0.908  5.1 

Table 4 Material properties.

Table 5 The effect of crack angle on the normalized stress intensity factor                .
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Similarly, no remeshing is required for
simulation of crack propagation. The analytical
solution for the displacement field is adopted in
order to obtain asymptotic crack-tip functions.
Mixed-mode stress intensity factors (SIFs) are
determined based on the interaction integral
approach for evaluation of the J integral. The
results are in good agreement with other available
numerical or (semi-) analytical methods. In most
examples, the maximum difference between the
developed method and other available methods
has been lass than 2% and 2.5% for modes I and
II, respectively. Numerical results have also
shown that values of stress intensity factors
become independent from the crack tip domain
size as it reaches to about a third of the crack
length.

6. References

Muskelishvili NI. Some basic problems on the
mathematical theory of elasticity, Noordhoof,
Groningen, 1952.

Sih GC, Paris PC, Irwin GR. On cracks in
rectilinearly anisotropic bodies. International
Journal of Fracture Mechanics 1 (1965),
189–203.

Tupholmazqe GE. A study of cracks in
orthotropic crystals using dislocations layers.
Journal of Engineering and Mathematics 8
(1974), 57–69.

Viola A, Piva A, Radi E. Crack propagation in
an orthotropic medium under general loading.
Engineering Fracture Mechanics 34(5) (1989),
1155-1174.

Lim WK, Choi SY, Sankar BV. Biaxial load
effects on crack extension in anisotropic solids,
Engineering Fracture Mechanics 68 (2001),
403–416.

Nobile L, Carloni C. Fracture analysis for
orthotropic cracked plates, Composite
Structures 68(3) (2005), 285-293.

Cruse T. Boundary Element Analysis in
Computational Fracture Mechanics, Kluwer:

Dordrecht, 1988.

Swenson D, Ingraffea A. Modeling mixed
mode dynamic crack propagation using finite
elements: Theory and applications. Comput.
Mech. 3 (1988) 381-397.

Belytschko T, Lu YY, Gu L. Element-free
Galerkin methods. International Journal for
Numerical Methods in Engineering 37 (1994)
229-256.

Belytschko T, Black T. Elastic crack growth in
finite elements with minimal remeshing, Int, J,
Num, Meth, Engng. 45 (1999), 601- 620.

Melenk JM, Babu?ka I. The partition of unity
finite element method: basic theory and
applications, Computer Methods in Applied
Mechanics and Engineering 139 (1996), 289-
314

Duarte CA, Oden JT. An H-p adaptive method
using clouds, Computer Methods in Applied
Mechanics and Engineering 139 (1996), 237-
262.

Moes N, Dolbow J, Belytschko T, A finite
element method for crack growth without
remeshing, International Journal for Numerical
Methods in Engineering 46 (1999), 131-150.

Dolbow J, An Extended Finite Element
Method with Discontinuous Enrichment for
Applied Mechanics, Theoretical and Applied
Mechanics, Northwestern University,
Evanston, IL, USA: Ph.D. thesis, 1999

Sukumar N, Mo?s N, Moran B, Belytschko T.
Extended finite element method for three-
dimensional crack modeling, International
Journal for Numerical Methods in Engineering
48 (2000), 1549-1570

Mohammadi S. Extended Finite Element
Method for Fracture Analysis of Structures,
Blackwell Publishers, UK (2007).

Asadpoure A, Mohammadi S, Vafai A.
Modeling crack in orthotropic media using a
coupled finite element and partition of unity
methods. Finite Elements in Analysis and
Design (2006) 42/13 pp. 1165-1175.

206 International Journal of Civil Engineerng. Vol. 6, No. 3, September 2008

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ce
.iu

st
.a

c.
ir

 o
n 

20
24

-0
8-

28
 ]

 

                             9 / 10

http://ijce.iust.ac.ir/article-1-179-en.html


Kim JH, Paulino GH. The interaction integral
for fracture of orthotropic functionally graded
materials: evaluation of stress intensity factors,
International Journal of Solids and Structures
40 (2003), 3967-4001

Jernkvist LO. Fracture of wood under mixed
mode loading II Experimental investigation of
Picea abies.  Engineering Fracture Mechanics
2001; 68:65-57 

207S.H. Ebrahimi, S.Mohammadi, A.Asadpour

[19][18]

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ce
.iu

st
.a

c.
ir

 o
n 

20
24

-0
8-

28
 ]

 

Powered by TCPDF (www.tcpdf.org)

                            10 / 10

http://ijce.iust.ac.ir/article-1-179-en.html
http://www.tcpdf.org

