
1. Introduction

The data for calibration of a WDS model is
usually collected from a series of field tests at
strategic locations within the network, in which
pressure heads are recorded (de Schaetzen 2000).
The accuracy of calibration is dependant on the
quality and quantity of the collected data.
Therefore, selection of appropriate locations,
called sampling design (SD), has been a
challenge among researchers and practitioners
especially in recent years (Kapelan et al. 2005a).
Determination of optimal sampling design
locations is usually done by evaluating the trade-
off between calibrated model accuracy and the
cost of sampling design (typically surrogated by
the number of sampling devices used). Model
accuracy is usually evaluated using some norms
of the parameter or the prediction covariance
matrix which, in turn, is calculated from the
relevant Jacobian matrix (Bush & Uber 1998). 
A newly developed model by Kapelan et al.
(2003) presented a deterministic multi-objective
genetic algorithm (MOGA) for SD with the aim
of calibration of WDS models. In the

deterministic approach, elements of the Jacobian
matrix are calculated prior to the optimisation
model run by assuming the model parameter
values. This obviously is prone to errors as this
kind of information is not readily available. The
methodology developed and presented here is
trying to overcome this limitation by assuming
that each calibration parameter has uncertain
value following some pre-defined probability
density function.

The assumption of uncertainty in parameters has
recently been addressed by a number of
researchers in water resources problems (Wu et
al. 2006, Kapelan et al. 2005b). Kapelan et al.
(2005b) applied the sampling-based technique
using Latin hybercube (LH) to deal with
uncertainty in parameters. Wu et al. (2006)
compared Monte Carlo simple genetic algorithm
(MCSGA) with noisy genetic algorithm (NGA)
in groundwater sampling network design. They
confirmed that NGA can be used as a useful
surrogate of MCSGA. However, this approach
could still be computationally demanding.
One solution to alleviate this difficulty is to apply
meta-models. In a recently developed one, Broad
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et al. (2005) proposed it as an artificial neural
network (ANN) substituting for a complex
simulation model of WDS design, in which ANN
were trained offline. Yan & Minsker (2006) also
developed an adaptive neural network –single
objective genetic algorithm model for
groundwater remediation design. They saved
around 90 percent of the simulation model calls
with no loss in accuracy of optimal solutions.

In this paper, a MOGA-ANN algorithm has been
developed for the sampling design of a WDS
model.

2. Optimal Sampling Design

The current SD is carried out under the following
assumptions: (1) the type of predicted variables,
which include nodal pressure, pipe flows or both,
is assumed to be only nodal pressure head; (2)
Both nodal demands and pipe roughness
coefficients are considered as calibration
parameters; (3) the steady-state WDS hydraulic
model is calibrated under extended period
simulation.

The stochastic SD problem is formulated and
solved here as a two-objective optimisation
problem under calibration parameter uncertainty.
The objectives are to maximise the calibrated
model accuracy and to minimise number of
sampling devices as a surrogate of sampling
design cost. 

To quantify the calibrated model prediction
accuracy, a first-order second-moment (FOSM)
model is used to approximate both parameter
covariance matrix and prediction covariance
matrix as follows (Bush & Uber 1998, Kapelan et
al. 2005a):

(1)

(2)

where s = standard deviation of measurement
devices; and J=Jacobian matrix of derivatives
cyi/cak (i=1,...,N0;k=1,...,Na), y=vector of

predicted variables in locations of interest,
a=vector of calibration parameters, N0=number
of measurement data in both temporal and spatial
domains according to measurement locations of
interest, Na=number of calibration parameters;
Jz=Jacobian matrix of derivatives czi/cak
(i=1,...,Nz;k=1,...,Na); z=vector of Nz model
predictions of interest, and Nz=number of model
predictions of interest in both temporal and
spatial domains according to all potential
locations of pressure logger installation. The
value of the ith diagonal element in matrix covz
indicates the uncertainty of ith model prediction.
Therefore, the model prediction uncertainty is
presented as the average of all element prediction
uncertainties:

(3)

Since the prediction uncertainty is calculated
with the assumption of definite calibration
parameter values, the above formula
(deterministic approach) can be prone to errors as
this kind of information is not definitely available
before model calibration. To remove this
limitation, each calibration parameter is assumed
here to have uncertain value following some pre-
defined probability density function as follows:
(1) uncertain pipe roughness coefficient
parameters follow a uniform probability density
function (PDF) with lower and upper bounds
equal to 30% of the deterministic value; (2)
uncertain nodal demand parameters follow a
Gaussian PDF with coefficient of variation (CV)
equal to 0.2.

To deal with the uncertainty of calibration
parameter values, noisy fitness function is used
here. It has been shown to perform well without
sampling a large number of uncertain values (Wu
et al. 2006, Gopalakrishnan et al. 2001).
Therefore, the first objective value is defined as
the average of normalised (relative) traces of
model prediction covariance matrices, each of
which is constructed from randomly generated
sample of calibration parameter values:

(4)
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where Nk=number of sets of samples; F j
1,ml=the

value of model uncertainty for ideal state where
all potential measurement locations are
monitored. This type of calculating the first
objective value is called ‘full’ fitness model
henceforth. To do so, Nk sets of uncertain
parameter values are randomly generated using
LH sampling technique and associated PDFs.
The noisy objective value is then calculated by
averaging the relative accuracies obtained of
running Nk runs of the deterministic SD model.
The value of Nk is set to 500 samples that is
sufficient for the noisy function based on the
performed sensitivity analysis.

The second objective value addresses the total
cost of sampling. As a surrogate, the number of
pressure loggers is introduced as an indicator of
sampling cost. Therefore, normalised number of
pressure loggers (percentage) is the second
objective function. It is presented as follows with
its associated constraint:

(5)

(6)

where Np=number of measurement devices;
Nml=number of potential nodes for measurement;
, Np

min,Np
max= minimum required and maximum

number of measurement devices, respectively.

3. Methodology

The objectives and constraint defined by (4)-(6)
indicate a two-objective optimisation problem
under uncertainty. However, the calculation of
the full fitness model objective (i.e. the model
with large number of samples in which the
accuracy objective function defined in equation
(4) is calculated) involves repetitive calculations
of Jacobian matrices, which is usually time-
consuming. To resolve the computational time
issue, the optimisation problem is solved by
using a multi-objective genetic algorithm and
adaptive neural networks (MOGA-ANN). Each
GA chromosome is coded as a potential sampling
design solution and its fitness is evaluated

initially by using the full fitness model. Later on,
during the GA search process, the full fitness
model is progressively replaced with the
periodically (re)trained neural network meta-
model where (re)training is done using the data
collected by the full model. The ANN is retrained
after a pre-specified number of objective function
evaluations by the full model. The exact pre-
specified number is identified with performing
sensitivity analysis which will be described in the
result section. The detailed flowchart of MOGA-
ANN is shown in Figure 2.

3.1Multi-objective genetic Algorithm

In this study, a multi-objective evolutionary
algorithm known as non-dominated sorting
genetic algorithm II (NSGA-II), developed by
Deb et al. (2002), is used. NSGA-II alleviates all
following difficulties of previous MOGAs: (1)
long computational complexity (2) non-elitism
approach (3) The need for specification of a
sharing parameter. The selection operator in
NSGA-II combines the parent and offspring
populations in a single population and then
selects the best solutions with respect to fitness
and spread criteria. NSGA-II can better converge
near the true Pareto-optimal front and can better
spread solutions through it. More details of this
approach can be found in the relevant reference.

Integer value coding is used for the encoding of
each chromosome. The number of genes equals
the maximum number of measurement devices
(Np

max), each of which represents the position of
one pressure logger in WDS. A gene with zero
value indicates no measurement device is
available. When using integer encoding, two or
more genes may take the same integer-value
values, indicating more than one pressure logger
should be installed on the same location. These
solutions will be rejected by MOGA due to an
increase in cost and no increase in accuracy
(Kapelan 2002).

3.2 Artificial Neural Network (ANN)

The ANN is used here as a replacement to a full
fitness evaluation model used when estimating
the model accuracy objective with the idea of
making significant computational time savings.
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However, note that ANN predictions are only
approximate and therefore prone to errors in
evaluations of objective value. To resolve this
drawback, some strategies have been proposed to
sample solutions and calculate relevant objective
value with full model. Also, the ANNs are
periodically retrained within the algorithm
progress to improve their prediction accuracy.

Figure 1 shows the architecture of the proposed
ANN. As can be seen, a two-layer neural network
including input, a hidden and an output layer is
assumed. Input data are the potential pressure
measurement locations represented by a relevant
integer value. Output layer, which has one
neuron, is the value of the prediction accuracy
objective function defined in equation (4). The
second objective function value, i.e. the number
of measurement locations, is directly calculated
and there is no need to consider it as additional
output neuron. In addition, back propagation
Levenberg-Marquardt algorithm was used as an
ANN training algorithm (Lingireddy & Ormsbee
1998).

3.3 Main loop

A flowchart of the proposed MOGA-ANN
method is shown in Figure 2. As can be seen, the
method is essentially an NSGAII search method
which makes use of the artificial neural network
and the caching technique. The search process
starts by creating the random initial population
and evaluating the fitness of each chromosome
by using the full model. The data obtained (both
chromosome values and the objective function
values) is then stored in the cache with the idea of
preventing unnecessary, i.e. costly, repetitive
fitness evaluations. Note that cache is updated
continuously during the search process, i.e. every

time chromosome fitness is evaluated using the
full model.

The main loop of the algorithm starts with the
creation of the offspring population using the
NSGA-II selection, crossover, and mutation
operators. In the first few generations,
chromosome fitness is estimated using the full
model only to prepare enough training data for
the ANN. Once the ANN is trained for the first
time, evaluation of the objective function values
is done by using both the ANN and the full
model. At first, objective values of all
chromosomes in the offspring population are
evaluated using the ANN. Then the offspring
chromosomes are compared to the ones
previously stored in the cache. If the offspring
chromosome is found in the cache then its
accuracy objective value (approximated by the
ANN) is replaced with the corresponding value
from the cache (estimated previously by using the
full model). 

To improve the algorithm convergence, a (small)
number of chromosomes in the offspring
population is selected and re-evaluated by using
the full model (if it was previously evaluated by
the ANN model). The chromosomes selected are
the ones present in the best NF Pareto
(sub)fronts, i.e. subpopulations of the offspring
population. Obviously, a trade-off exists here -
the larger the NF the better from the search
accuracy point of view but also the worse from
the computational effort point of view. In the case
study shown here, the optimal value of NF is
determined by performing the relevant sensitivity
analysis.

Once the offspring population is created by using
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Fig.1 ANN Architecture
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the above procedure, it is combined with the
parent population into a single one. The next
generation population is then created by using the
standard NSGA-II approach. At this point an
additional check is made and if a chromosome is
identified with a fitness value estimated by the
ANN, its fitness is re-evaluated by using the full
model. This is necessary to ensure the good
algorithm convergence and it typically involves a
small number of chromosomes. The above search
process continues until some GA convergence
criterion is met (e.g. the pre-specified number of
generations).

As an alternative, to calculate objective value of
model prediction accuracy in the uncertain
environment, an MCS-based model is adopted to
compare the results of the optimal sampling
locations obtained using noisy objective value to
the ones obtained using the MCS method. In the
MCS-based model, an equivalent deterministic
sampling design optimisation problem (i.e.
maximisation of normalised prediction
uncertainty defined by (3)) is solved for a number

of randomly generated calibration model
parameter samples. Based on sensitivity analysis
performed, 1000 samples are good enough for
MCS model whose statistics sufficiently
converge to a unique value. Optimal sampling
locations under uncertainty are then determined
by identifying the most frequently selected
sampling locations in these optimisation runs.

4. Case study

The above methodology is tested and verified on
a literature case study of the Anytown network
(Kapelan et al 2003, Ormsbee 1989). The
purpose on this case study is to show the
capability of the model in decreasing
computational effort to get optimal solutions.
Figure 3 shows the layout of Anytown network.
The input data has been taken from Ormsbee
(1989). Sampling design is performed with
respect to calibration parameters of 5 grouped
pipe roughness coefficients and 4 grouped nodal
demands i.e. the total of Na=9. All of the network
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Fig. 2 MOGA-ANN Flowchart
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nodes are considered as potential nodes for
measurement except for the reservoir and tank
nodes, i.e. Nml=16. Full Jacobian matrix Jml is
obtained using all potential measurement
locations and loading conditions No=128 (16
nodes for 8 loading conditions). The standard
deviation of all pressure loggers is assumed to be
equal to s=0.1m.

5. Results and discussion

MOGA model settings were determined after a
limited number of trial runs with different initial
populations. These parameters used are as
follows: population size of 50 chromosomes,
binary tournament selection operator, mutation
with the probability of 0.25 and one point
crossover with the probability of 0.9. All MOGA
and MOGA-ANN runs were performed for 500
generations.

The number of best ranked Pareto-(sub)fronts,
i.e. subpopulations NF was investigated here by
performing the sensitivity analysis. The same
methodology was used to determine the optimal
number of ANN’s hidden neurons. The criterion
for comparing different settings is the search
model reliability denoted here as the percentage
of Pareto optimal front points obtained by using
the MOGA-ANN model when compared to the
full-fitness evaluation based MOGA model. This
percentage has been averaged over 20 MOGA
runs with different random initial populations to
diminish the effect of different search starting
points.

Figure 4 shows the model reliability with

different number of best fronts and different
number of hidden neurons. As it can be seen, the
reliability of 100% is obtained for NF=3 and the
optimal number of hidden neurons is 20.
Furthermore, Figure 5 shows the model
reliability versus the number of retraining data.
As it can be seen, model reliability declines when
number of retraining data increase for NF=1 and
2. On the other hand, when NF increases, the
model reliability becomes less dependent on
updating ANNs. Therefore, the ANN is trained
for the first time after a few number of
generations of full fitness evaluations (e.g. 5
generations), and continuously retrained after
every 1000 objective function evaluations by the
full model. Finally, a slightly conservative value
of NF=3 is selected since the model reliability is
100% for all relative states.

After setting the above parameters for the
proposed model, the solution of MOGA-ANN as
well as MCS-based model were obtained as
Pareto optimal fronts shown in Figure 6. Note
that for each point on the front, there is a set of
optimal locations for installing measurement
devices (details presented in Table 1). After
developing trade-off curve in Figure 6, the
optimal solution can be selected by decision
maker by one of the following approaches: (1)
the solution with a cost equal to or just below the
budget available; (2) the solution with the relative
accuracy equal to or just above the minimum
required; (3) the solution where a further small
increase in the accuracy leads to a considerable
increase in the number of measurement locations.
For example based on the last criterion, when
increasing the number of measurement location
to more than 6 or 7 nodes (i.e. 0.38 or 0.44

53Kourosh Behzadian, Abdollah Ardeshir, Zoran Kapelan, Dragan Savic

1004

1032

1036

1066

1064

1060

1056
1052

1006

1030

1034

1038

1014

1018

1028

1026

1010

1012

1024

1022

1016

1020 1042

1044

1046

1048

1050

1058

1002

1040

1062

1078

1008

1080

200120022003

20

30

40
50

140

170

130

120

110

160

100

150

80

90

70

60

500

501

502

Fig. 3 Layout of case study network

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ce
.iu

st
.a

c.
ir

 o
n 

20
24

-1
2-

02
 ]

 

                             6 / 10

http://ijce.iust.ac.ir/article-1-207-en.html


54 International Journal of Civil Engineerng. Vol. 6, No. 1, March 2008

Fig.4 Model reliability (percentage of obtaining optimal solution) with respect to the number of neuron in hidden layer for
20 runs with random initial populations; NF=Number of best suboptimal fronts in offspring population, in which the

objective value is calculated by full fitness model

Fig. 5 Model reliability with respect to the number of retraining data for 20 runs with random initial populations

Fig. 6 Comparison of Pareto optimal fronts between MOGA-ANN and MCS-based model
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normalised number, respectively), there is no
great improvement in prediction accuracy.
Therefore, this point can be introduced as a cost-
effective point. 

In Table 1, in addition to the optimal solutions of
MOGA-ANN, the percentage of selected
sampling locations in the MCS-based model is
shown for a given number of monitoring
locations. As can be seen, the most frequently
selected sampling locations in MCS-based model
almost always correspond to the optimal ones in
MOGA-ANN. Of course, there are some
discrepancies too, particularly in the cases of 3, 4
and 6 monitoring locations. This occurs because
of different approaches used in the two methods
when dealing with uncertainty. Nevertheless, 97
percent of solutions matched show the similarity
in the results obtained using the above two
stochastic approaches.

In order to validate the proposed MOGA-ANN
algorithm, the MOGA model with all full model
fitness evaluation and without applying ANNs

was performed. Note that the MOGA flowchart is
similar to that of MOGA-ANN (in Figure 2)
except that the model always passes stages 5-7.
Finally, MOGA without applying ANN found the
same solutions as MOGA-ANN and therefore its
optimal measurement locations and Pareto
optimal front were not shown in Figure 6 and the
Table 1. This correspondence between MOGA-
ANN and MOGA denotes the credibility of the
proposed methodology.

Figure 7 shows the comparison of the number of
the actual accuracy function evaluations using the
full model, the cache and the ANNs
approximations as the MOGA-ANN search
progresses. It can be seen that only 12% of
chromosomes are evaluated by using the full
model. Most of these evaluations occurred in the
first five generations of the MOGA-ANN run
when the initial ANN training data is collected.
After that, the proportion of the full model
evaluations is decreasing in the favour of two
other means of estimating the solution fitness.
The percentage of objective values retrieved from
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F2 f1 

Network nodes

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 

0.13 0.188 
Solution 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 

percentage 0 1 11 2 35 3 2 36 5 0 64 22 2 4 3 10 

0.19 0.303 
Solution 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 

percentage 0 0 6 1 53 6 1 43 38 17 75 24 1 3 7 25 

0.25 0.436 
Solution 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 

percentage 0 0 0 1 58 9 0 69 38 43 89 11 0 1 17 62 

0.31 0.568 
Solution 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 1 

percentage 0 0 0 1 81 9 1 87 33 73 93 2 0 0 38 81 

0.38 0.672 
Solution 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 1 

percentage 0 0 1 1 95 17 2 96 43 91 98 2 0 0 62 92 

0.44 0.744 
Solution 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 1 

percentage 4 0 5 4 100 34 6 98 54 95 99 9 0 2 92 98 

0.50 0.785 
Solution 0 0 0 0 1 0 1 1 1 1 1 0 0 0 1 1 

percentage 9 0 10 12 100 43 23 99 59 96 100 44 1 7 98 100 

0.56 0.825 
Solution 0 0 0 0 1 1 0 1 1 1 1 1 0 0 1 1 

percentage 10 0 18 22 100 60 39 99 69 96 100 74 2 13 99 100 

0.63 0.866 
Solution 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 

percentage 11 0 26 29 100 76 57 100 82 97 100 92 3 28 100 100 

0.69 0.897 
Solution 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 

percentage 11 0 42 39 100 84 74 100 91 97 100 99 8 53 100 100 

0.75 0.926 
Solution 0 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1 

percentage 12 0 63 57 100 90 86 100 97 97 100 100 20 79 100 100 

0.81 0.952 
Solution 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 

percentage 14 1 78 81 100 93 94 100 99 97 100 100 46 95 100 100 

0.88 0.974 
Solution 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

percentage 16 6 97 97 100 99 99 100 100 98 100 100 87 100 100 100 

0.94 0.989 
Solution 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

percentage 24 76 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

“1” means pressure logger should be installed in the node and “0” means no pressure logger is required in the node 

Table 1 Pareto optimal solutions in MOGA-ANN and percentage of selected sampling locations in MCS-based model
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the cache is 25%. 

Table 2 shows the comparison of computational
time for different sampling design methodologies
(MOGA model with all full model fitness
evaluations, the MOGA-ANN model and the
MCS model). As it can be seen, the MOGA-ANN
method is nearly 9 times faster than the MOGA
method based on full model fitness evaluations.

6. Conclusions

This work proposes an adaptive neural network
multiobjective genetic algorithm called MOGA-
ANN to determine optimal sampling locations
under parameter uncertainty in a WDS for the
purpose of its hydraulic model calibration. The
ANN is adaptively retrained during the search
process. The caching technique was also
introduced to efficiently retrieve previously
evaluated solutions. Compared to Kapelan’s et al.
(2003) research, MOGA-ANN has the following
contributions: (1) Kapelan et al. (2003) is based

on the MOGA developed by Fonseca and
Fleming’s (1993) algorithm while MOGA-ANN
is developed based on NSGAII (Deb et al. 2002)
which have overcome the disadvantages of the
first approach (2) MOGA-ANN assumes
uncertain values for calibration parameters; (3)
MOGA-ANN incorporates MOGA and ANN
algorithms together.

To deal with the uncertainty, noisy fitness
function was used in the MOGA-ANN method.
Another approach of handling this uncertainty is
by using the MCS method. The two methods
produced different sets of solutions due to the
algorithmic differences. Still, a large proportion
of solutions obtained by the two methods were
identical.

The results obtained show that large
computational savings (90% reduction in CPU
time) can be achieved by using the MOGA-ANN
when compared to the full-model based MOGA
or the MCS model without significant decrease in
the final solution accuracy. This finding can be
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Fig. 7 Comparison of objective value evaluations in MOGA-ANN for one sample run

Model Type Time (minutes) The number of deterministic 
prediction accuracy calculation 
calls

MOGA 80 12500000
MOGA-ANN 9 1475000
MCS-based 160 25000000

*The number of deterministic prediction accuracy calculation calls for MOGA and MCS-based model is equal to 
NpopNgenNk, where Npop is GA population size (50 here) and Ngen is the number of GA generation before convergence 

(500 here) and Nk is the number of samples 

Table 2 Comparison of computational effort to achieve optimal solutions among the models
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useful in decreasing the computational effort of
optimization models with time-consuming fitness
evaluations.
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