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1. Introduction

A typical water distribution network is a

collection of pipes, reservoirs, pumps, and

different kinds of valves connected to each other

in order to meet specified demand at nodes.

Basically, the optimal design of pipe networks is

a multi-objective task involving hydraulics,

reliability, and water quality. The multi-objective

design of water distribution networks

necessitates the development of proper

algorithms before it can be effectively applied in

practice. However, investigations indicate that

much can be gained by handling the matter as a

single objective problem of component design in

which only the size optimization of different

components such as pipes, tanks, etc with a least

cost objective is considered.

Optimal design of pipe networks, when

formulated mathematically, is clearly one of

constrained minimization where the hydraulic

requirements constitute some of the constraints

of the problem. Various investigators have

addressed this problem in a number of different

ways during the past decades. Enumeration

techniques, though reliable, suffer from limited

practical application due to an extraordinary wide

search space and consequently an enormous

computational time required when applied to

real-world size networks, where optimization is

mostly needed (Yates et al. 1984). The class of

constrained minimization, in particular

decomposition methods, has become popular in

recent years. These algorithms can be divided

into two main groups, namely linear and

nonlinear programming methods. The first linear

decomposition method, called linear

programming gradient (LPG) suggested by

Alperovits and Shamir (1977) and later extended

by Kessler and Shamir (1989), assumes the

length of the pipes in each arc to be the decision

variable for a given flow distribution and solves

the linear programming problem so constructed.

Modifications and comments to the original LPG

method were made by Quindry et al. (1979),

Saphir (1983), and Fujiwara et al. (1987).

Quindry et al. (1981)  presented an analogous

approach to the LPG method in which the

problem is solved for a given set of hydraulic

heads. The first of the nonlinear decomposition
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models was devised by Mahjoub (1983) who

started with an assumed initial link flow rate and

then solved for link head losses. The obtained

optimal link head losses were then fixed and the

cost minimized for link flows. The whole

procedure was repeated until no improvement

could be attained. An improvement to the above

method was suggested by Fujiwara and Khang

(1990), who used the Lagrange multipliers of the

optimal solution obtained in the first phase to

modify the flow distribution, achieving a

reduction in system cost before the second phase

is started. Recently, genetic algorithms (GA)

have been applied to the design of pipe networks

(Simpson and Goldberg 1993; Simpson et al.

1994; Savic and Waters 1997, Wu and Simpson

2002; Wu et al. 2002). Some problems associated

with GA are the uncertainty about the termination

of the search and, as in all random search

methods, the absence of a guarantee for the

global optimum. 

Global (unconstrained) optimization methods

are among the first proposed for pipe network

design (Abebe and Solomatine, 1999).  . These

methods convert the original constrained

problem to an unconstrained problem via the use

of a penalty function or a Lagrange multiplier

method. The solution of the resulting problem is

therefore much easier but the final solution is

inferior to methods so far described. However, a

global optimization formulation of the pipe

network design problem has the advantage of

simplicity and practicality for engineering use.

Furthermore, all the random search and evolution

methods such as GA employ some sort of global

optimization formulation of the pipe network

optimization. Abebe and Solomatine (1999) used

the penalty method to define the pipe design

problem as an unconstrained optimization

problem, which was then solved by a global

optimization package, GLOBE (Solomatine

1998), incorporating four different algorithms. 

In this paper, the optimal design of pipe

network is addressed from a hydraulic point of

view. Only steady state condition is considered

here; however, the extension to the case of

dynamic condition is straightforward. The paper

addresses the determination of optimal diameters

of pipes in a network with a pre-determined

layout in order to provide the required pressure

and quantity of water at every demand node. A

penalty method is used to formulate the optimal

design of the pipe network as an unconstrained

optimization problem, which is then solved by a

general purpose optimization package called

DOT (Vanderplaats, Miura and Associates 1994).

The formulation of the problem is described next.

The effect of the penalty parameter and the cost

function approximation on the final solution is

then investigated and finally some verifying

numerical examples are presented.

2. Problem Formulation

The optimal design of a pipe network with a

pre-specified layout in its standard form is

described as follows:

(1)

Subject to:

2.1. Hydraulic constraints: 

(2)

(3)

(4)

2.2. Head and flow constraints:

(5)

(6)

2.3.  Pipe size constraints:

(7)

where Ll = length of the lth pipe ; Cl = per unit

cost of the lth pipe ;  dl =  diameter of the lth pipe

; ql = flow in the lth pipe; Jl =  head loss in the lth
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pipe ; Hk =  nodal head at the kth node;  Qk =

consumption at node k ; Hmin = minimum

allowable hydraulic head; qmin = minimum

allowable pipe flow;  dmin and dmax = minimum

and maximum allowable pipe diameter,

respectively;  and  n, p, m = total number of

nodes, loops, and links in the network,

respectively; K = Hazen-Williams constant

whose value depends on the system of units used;

ch = Hazen-Williams roughness coefficient

whose value depends on the pipe characteristics;

= 2.63 and  = 0.54. The first set of constraints

(2)-(4) describes the flow continuity at nodes,

head loss balance in loops, and the Hazen-

Williams equation. The second set (5)-(6) refers

to the minimum nodal head and pipe flow

requirements while the last constraint (7) requires

the optimal pipe diameters to be between the

maximum and minimum available pipe

diameters, respectively. Equation (1) describes

the total cost of the pipes in the network.

In this work, hydraulic constraints are satisfied

via the use of an element by element simulation

program, which explicitly solves the set of

hydraulic constraints for nodal head and pipe

flows (Afshar 2001). The second set of

constraints are, therefore, included in the

objective function via the use of an exterior

penalty method resulting in the following

penalized problem:

(8)

Where l, k = penalty parameters with large

values when corresponding constraints are

violated, and zero when the constraints are

satisfied. For each network with the known pipe

size diameters obtained, the distribution of the

nodal heads and pipe flows are calculated by the

simulation program and used to calculate the

penalty terms in Eq. (8). The pipe size constraints

are handled by the optimization package, DOT,

as box constraints when the pipe diameters are

taken as decision variables. Next, we consider the

numerical treatment of the penalty term and the

type of the analytical function used to

approximate the cost per unit length of the pipes

and present the results obtained.

3. Penalty prameter treatment

It is a common practice in the penalty

formulation of the pipe network design to assume

a large number for the penalty parameter and

minimize the penalized objective function

(Abebe and Solomatine 1999). The first difficulty

with this approach is that the numerical value of

the penalty coefficient is not known a priori and

hence a trial and error procedure should be used

to get the proper value, ensuring the enforcement

of the constraints included in the objective

function. Secondly, this large value of the penalty

coefficient could change from one application to

another, requiring the proper setting of the

penalty parameter for each application. From a

mathematical point of view, the penalty method

is an iterative approach, which asymptotically

converges to the solution of the original

constrained problem as the value of the penalty

coefficient increases. Iterative nature of the

method eliminates the need for choosing the

numerical value of the penalty coefficient via a

trial and error process. Furthermore, iterative

implementation of the penalty method can

improve the effectiveness of the method as will

be shown later when numerical examples are

considered. In this paper, the following strategies

are used to set the value of the penalty parameter:

αα
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Set penalty parameters lα and 1=kα

Minimize the penalized objective 
function defined by Eq. (8) 

Check if the nodal pressures and pipe 
flow, or velocity,  are feasible. Yes 

For pressure constraint violation, set kk αα 10=
For  flow, or velocity,  constraint violation, set ll αα 10=

No 

Stop 

Set the initial design 
mlddl ,...,2,1max ==

or 
mlddl ,...,2,1min ==

Set the optimized solution as the 
initial design for the next iteration 

Fig. 1 Iterative penalty method flow diagram
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(1) Choose a very large value for the penalty

parameter (herein, 10 Cmax, where Cmax is the cost

of the most expensive design); and (2) use an

iterative approach in which the value of the

penalty parameter is increased by an order of

magnitude starting from unity, until the

constraints are exactly satisfied. The iterative

procedure employed here is depicted in Fig. 1.

4. Pipe cost function

An analytical function of the form is

usually used to approximate the cost per unit

length of commercial pipes when a continuous

method of optimization is employed for the

optimum design of the networks. Unit cost

parameters, a and b,  are usually obtained via a

least- squares fit of the aforementioned function

to the discrete cost data. It is obvious that this fit

would not be exact in terms of both function

value and its gradient. Most of the common

mathematical search methods use function value

or its derivative to find the optimum value of the

objective function. Thus, it is expected that

improving the accuracy of the approximate cost

function would improve the optimization results.

In this work, a piecewise cubic spline is used to

approximate the cost per unit length of the pipes

and the results are compared with the usual least-

squares form. Cubic splines are, by definition,

third-order functions enjoying first and second

derivative continuity. A piecewise cubic spline fit

to a set of  N discrete data can therefore be easily

constructed by defining a different cubic spline

for each  N-1 reach  such that  their first and

second derivative at N discrete points are

continuous. This leads to 2(N-1) equations

stemming from the fact that each of the N-1

piecewise functions at their two end points

should equate the corresponding discrete data

plus 2(N-2) equations stemming from the

continuity of the first and second derivative at N-

2 internal points, summing up to 4(N-1) - 2

equations in terms of 4(N-1) unknowns defining

N-1 piecewise third-order functions. Two

boundary conditions regarding the curvature of

the spline at the two extreme points of the set are

used to close the system of simultaneous linear

equations. The size of the system of equations

can be reduced by a proper formulation of the

problem in terms of the value of the second

derivatives at the N discrete points. The solution

of this system yields the value of the second

derivatives required to define each of the cubic

splines at N-1 reach. This function can then be

used to approximate the value of the discrete

function at any arbitrary points, including the

discrete data points. It is obvious that cubic spline

approximation would always yield exact values

at the discrete data points and therefore is a more

accurate representation of the approximated

function compared to a least-squares fit. Figure 2

shows the least squares and piecewise cubic

spline approximations of the discrete cost

function used in the literature for the two-loop

network (Table 1).

5. Test problems

The first problem addresses a two-loop

network with 8 pipes, 7 nodes, and one reservoir

as shown in Fig. 3 (Abebe and Solomatine 1999).

All the pipes are 1,000 m long and the Hazen-

Williams coefficient is assumed to be 130 for all

the pipes. The minimum nodal head requirement

for all demand nodes is 30 m. There are 14

commercially available pipe diameters as listed

ba d 

Diameter(cm) 2.54 5.08 7.62 10.16 15.24 20.32 25.4 30.48 35.56 40.64 45.72 50.8 55.88 

Cost (units/m) 2 5 8 11 16 23 32 50 60 90 130 170 300 

Table 1 Cost data for the two-loop network

Fig. 2 Cubic spline and  least-squares fit to the data of
Table 1
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in Table 1 while Table 2 shows the nodal

elevation and demands for the network.

First, the effect of the penalty parameter

treatment is investigated. For this, the problem is

solved using strategies (1) and (2) described

earlier, with two different initial solutions. Table

3 compares the results obtained and the number

of function evaluations required by these

methods. Here dmin and dmax refer to the initial

designs in which diameters of all the pipes are

taken as the minimum and maximum available

diameters, respectively. It can be seen that the

iterative use of the penalty parameter

significantly improves not only the solution for

all cases but also reduces the number of function

evaluation to get the solution. This is particularly

significant for the cases in which the most

expensive solution is taken as the initial guess for

the optimization process, where the network cost

is reduced from 469556 to 431630. This strategy,

therefore, will be used in all the examples

presented hereafter unless it is stated otherwise. It

should be noted that the results presented in Table

3 were obtained with a least-squares fit to

approximate the cost function. 

The problem is solved again, using a cubic

spline approximation of the pipe cost function. To

make the comparison possible, these solutions

along with the solutions shown in Table 3 are

converted to a discrete set of commercially

available diameters using the standard split pipe

techniques (Fujiwara and Khang 1990)  and

shown in Table 4. In this method, each link with

a given diameter d is replaced by two pipe with

diameters du and dl where du and dl are the

upper and lower commercially available

diameters, respectively. The lengths of these

pipes are then calculated such that the head loss

in the link remains unchanged. It can be easily

seen that cubic spline approximation of the cost

function yields a better solution for all different

initial solutions. It should, however, be noted that

much of the improvements of the obtained

solutions are due to the use of proposed iterative

penalty method. The results shown in Tables 3

and 4 also indicate that using the most expensive

design as an initial guess for the optimization

procedure, represented by dmax in the Table 3,

yields the better solution and hence would be

used in all other tests presented hereafter. The

near optimality of the solution obtained with the

proposed method presented in Table 4 is evident

by the fact that the nodal heads at four nodes ,ie;

nodes 3, 5, 6 and 7, of the network is

approximately equal to the minimum head

requirement set by the problem definition. Table

5 compares the cheapest solution obtained here

with the results obtained by some other

optimization methods for this problem. It is

clearly seen that the proposed method yield the

second best solution amongst all the methods

used in the literature. These solutions are

Node Demand 
(m3 /h) 

Ground  level 
(m) 

1 
2 
3 
4 
5 
6 
7 

---- 
100.0 
100.0 
120.0 
270.0 
330.0 
200.0 

210.0 
150.0 
160.0 
155.0 
150.0 
165.0 
160.0 

Table 2. Nodal demand and elevation data for the two-loop
network
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Fig. 3 Two-loop network
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obtained on a P4-800 MHZ with 5 second of

CPU time.

The second test problem considers the Hanoi

network with 34 pipes, 31 demand nodes, and

one reservoir as shown in Fig. 4 (Fujiwara and

Khang 1990; Abebe and Solomatine 1999). The

minimum nodal head requirement at all demand

nodes is 30 m. Table 5 shows diameters of

commercially available pipes. The cost of the

pipes per unit length are calculated based on the

analytical cost function 1.1d1.5 (Fujiwara and

Khang 1990). Solutions to this problem using

strategies (a) and (b) are shown in Table 7 in its

split form along with some of the results obtained

by other investigators for this problem. It is

observed that much more can be gained by the

use of the strategy (b) in larger problems. These

solutions are obtained using the most expensive

design as the initial guess. It should be remarked

that the solution of Fujiwara and Khang (1990) to

this problem was reported to be infeasible by

Dandy et al. (1996). It is again seen that the

proposed method has been able to produce the

best solution for this problem. These solutions

Pipe data Nodal data 

Strategy (a)              (b)   (a)   (b) 

Initial Guess* dmax dmin dmax dmin dmax dmin dmax dmin

Pipe Diameter (cm) Node Head (m) 

1 49.66 50.11 47.77 49.19 1 ------ ------ ------ ------ 

2 38.30 41.30 26.13 36.24 2 55.48 55.68 54.55 55.27 

3 32.46 33.98 39.62 33.78 3 40.91 42.63 31.43 39.29 

4 2.54 8.07 2.54 2.54 4 43.83 45.15 44.57 44.80 

5 32.30 30.40 37.31 30.86 5 46.80 42.26 30.01 43.79 

6 2.54 2.54 25.29 2.54 6 30.00 30.01 30.01 30.01 

7 36.37 32.00 23.85 34.26 7 30.01 30.00 30.01 30.01 

8 23.70 24.99 2.54 26.72 

Cost 
(units) 

469,556 477,266 431,630 462,170 

Evaluations** 1,100 1,532 968 903 

* Initial diameters used for the pipe diameters to start the optimization process. Note that NLP 

   methods  require an initial solution to start the process. dmax refers to an initial guess in which  

   all the pipe diameters are taken as the maximum diameter possible while dmin refers to the  

  minimum diameters. 

** The number of network evaluations required by the NLP method to converge to the final    

solution which can be considered as a measure of computational cost of the method.

Table 3 Optimal pipe diameters and corresponding nodal heads for the two-loop network
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are obtained on a P4-800 MHZ with 20 second of

CPU time.

The third test problem concerns the

rehabilitation of the New York City water supply

network with 21 pipes, 20 demand nodes, and

one reservoir as shown in Fig. 5 (Dandy et al.

1996). Commercially available pipe diameters

and their corresponding costs are shown in Table

8 while pipe and nodal data of the network are

shown in Table 9. The inclusion of zero diameter

with zero cost in the table of available pipe

diameter is intended to widen the search space to

include the 'no pipe' option for all of the links

present in the network.  Solutions to this problem

using strategies (a) and (b) are shown in Table 10

in its split form along with the cheapest

continuous and discrete pipe solutions reported

by Dandy et al. (1996). Again, the improvement

Pipe data Nodal data 

Fit Cubic spline Least squares Cubic spline Least squares 

Initial Guess dmax dmin dmax dmin dmax dmin dmax dmin

Pipe Solution [length (m) and diameter (cm)] Node Head (m) 

1 474.90    45.72

525.02      50.80 

799.87   45.72 

200.13   50.80 

516.59   45.72 

483.41   50.80 

250.19   45.72 

749.81   50.80 

1 ------ ------ ------ ------ 

2 936.27    25.40

63.73      30.48

732.71   35.56 

267.29   40.64 

777.51   25.40 

222.49   30.48 

815.41   35.56 

184.59   40.64 

2 54.66 53.78 54.55 55.27 

3 235.01     35.56 

764.99     40.64 

183.32   30.48 

816.68   35.56 

143.50   35.56 

856.50   40.64 

253.97   30.48 

746.03   35.56 

3 30.14 38.06 31.43 39.29 

4 999.96     2.54

0.04           5.08

1000.00   2.54 

0.00         5.08

999.77    2.54 

0.23         5.08

1000.00    2.54

0.00          2.54 

4 44.31 43.64 44.57 4480 

5 470.22     35.56 

529.78     40.64 

461.45   30.48 

538.55   35.56 

563.35   35.56 

436.65   40.64 

889.85   30.48 

110.15   35.56 

5 30.00 43.62 30.01 43.79 

6 9.98         20.32

990.02      25.40 

999.95    2.54 

0.05         5.08

9.84      20.32 

990.16   25.40 

999.94     2.54 

0.06          5.08 

6 30.01 30.01 30.01 30.01 

7 105.25     20.32 

894.75       25.4 

931.40   35.56 

68.60     40.64 

183.70   20.32 

816.30    25.4 

177.93   30.48 

822.07   35.56 

7 30.01 30.01 30.01 30.01 

8 999.97       2.54

0.03            5.08 

566.88   25.4 

433.12   30.48 

1000       2.54 

0.00         5.08

627.08    25.4 

372.92   30.48 

Cost 
(units) 

409,954 425,430 410,395 435,025  

Evaluations 
1,711 1,558 968 903 

Table 4 Optimal split pipe diameters and corresponding nodal heads for the two-loop network.

Fig. 5 New York tunnel network 
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made in the solution by iterative setting of the

penalty parameter is self-evident. This strategy

yields one of the cheapest solution ever achieved

for New York tunnels emphasizing on the ability

of the proposed method for the optimal solution

of large scale pipe network optimization

problems. These solutions are obtained on a P4-

800 MHZ with 10 second of CPU time.

A note should be made here regarding the size

of the problems considered. Although the search

space size of these problems are rather large, but

they can only be considered as small to medium

scale size problems compared to real world pipe

network examples. Though the applicability of

the proposed method does not basically depend

on the size of the problem, its performance might

be affected by the size of the problem to be

solved. 

6. Concluding remarks

A penalty method was presented for

converting the optimal design of pipe networks to

an unconstrained problem, which is then solved

           * Adaptive Cluster Covering with Local Search 

 Pipe length (m) and/or diameter (cm) 

Pipe Kessler and Shamir 

(1989) 

Eiger et al. (1994) Savic and Walters  

(1997) 

Abebe and Solomatine 

(1999) 

Present work 

GA1 GA2 GA ACCOL* 

1 1000.00           45.72 1000.00       45.72 45.72 50.80 45.72 55.88 474.98      45.72 

525.02      50.80 

2 66.00               30.48 

934.00             25.40 

238.02    30.48 

761.98           25.40 

25.40 25.40 35.56 45.72 936.27      25.40 

63.73        30.48 

3 1000.00           40.64 1000.00        40.64 40.64 40.64 35.56 50.80 235.01      35.56 

764.99      40.64 

4 713.00               7.62 

287.00               5.08 

1000.00          2.54 10.16 2.54 2.54 7.62 999.96        2.54 

0.04            5.08 

5 836.00             40.64 

164.00             35.56 

628.86          40.64 

371.14           35.56 

40.64 35.56 35.56 40.64 470.22      35.56 

529.78      40.64 

6 109.00             30.48 

891.00              25.40 

989.05       25.40 

10.95             20.32 

25.40 25.40 2.54 10.16 9.98         20.32 

990.02      25.40 

7 819.00              25.40 

181.00             20.32 

921.86       25.40 

78.14              20.32 

25.40 25.40 35.56 45.72 105.25      20.32 

894.75      25.40 

8 920.00               7.62 

80.00                 5.08 

1000.00           25.40 25.40 25.40 30.48 40.64 999.97      25.40 

0.03            5.08 

Cost 
(units) 

417,500 402,352 419,000 420,000 424,000 447,000 409,954 

Table 5 Optimal pipe diameters obtained with various methods for the two-loop network.

Diameter (cm) 30.48 40.64 50.80 60.96 76.20 100.16 

Table 6 Available pipe diameter for the Hanoi network
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Pipe length (m) and/or diameter (cm) 

Pipe Present work Fujiwara and Khang 

(1990) 

Abebe and Solomatine 

(1999) 

Strategy (a) Strategy (b) GA ACCOL 

1 0.3                 76.2 

99.7             101.6 

0.01              76.2 

100.0          101.6 

100.0                 101.6 101.6 101.6 

2 0.62               76.2

1349.4      101.6

0.9               76.2 

1349.1        101.6 

1350.0               101.6 101.6 101.6 

3 13.3             76.2 

886.7         101.6 

1.3              76.2 

898.7        101.6 

50.0                   76.2 

850.0                101.6 

101.6 101.6 

4 381.3           76.2 

768.7         101.6 

1.7              76.2 

1148.3       101.6 

60.0                   76.2 

1090.0            101.6 

101.6 101.6 

5 289.7           76.2 

1160.3       101.6 

2.3               76.2 

1447.8        101.6 

150.0            76.2 

1300.0            101.6 

76.2 101.6 

6 65.1             76.2 

385.0          101.6

.64               76.2 

449.4        101.6 

90.0                   76.2 

360.0               101.6 

101.6 76.2 

7 312.6            76.2

537.4         101.6 

71.9             76.2 

778.1         101.6 

350.0            76.2 

500.0               101.6 

101.6 101.6 

8 392.6          76.2 

457.3          101.6

140.5           76.2 

709.5         101.6 

460.0            76.2 

390.0               101.6 

76.2 101.6 

9 471.4           76.2 

328.6          101.6

217.8           76.2 

582.2         101.6 

570.0            76.2 

230.0               101.6 

76.2 61.0 

10 184.3          60.96 

765.7            76.2

51.5          60.96 

898.5           76.2 

690.0                61.0 

260.0            76.2 

76.2 101.6 

11 902.5            76.2

297.5          101.6

400.2         60.96 

799.8          76.2 

190.0            50.8 

1010.0            61.0 

76.2 76.2 

Table 7 Optimal pipe diameters obtained by various methods for the Hanoi network.
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Pipe length (m) and/or diameter (cm) 

Pipe Present work Fujiwara and Khang  

 (1990) 

Abebe and Solomatine 

(1999) 

Strategy (a) Strategy (b) GA ACCOL 

12 118.4      61.0 

3381.6     76.2

189.9         50.8

3310.1     61.0 

329.0                  50.8 

210.0                 61.0

76.2 101.6

13 89.1        61.0 

713.7       76.2

388.7       40.6 

411.3        50.8 

110.0                40.6

690.0                  50.8 

40.6 40.6 

14 317.6      61.0    

128.4       76.2

200.0       30.5 

300.0       40.6 

100.0                30.5

400.0                40.6

61.0 40.6 

15 427.5      61.0 

122.6        76.2 

546.9        30.5 

 3.1            40.6 

550.0           30.5 76.2 76.2 

16 2439.8      76.2 

290.2      101.6 

2712.5       30.5

17.5          40.6 

30.0                  40.6

2700.0                50.8 

76.2 30.5 

17 1233.2      76.2 

516.8       101.6 

716.0         40.6  

1034.0        50.8 

260.0                  50.8 

1490.0               61.0

76.2 50.8 

18 747.4         76.2 

52.6         101.6 

233.8        50.8 

566.3      61.0 

330.0                 61.0

470.0                  76.2 

101.6 61.0

19 124.5       61.0

275.5        76.2 

112.0         50.8

288.0        61.0  

150.0                 61.0

250.0                  76.2 

101.6 76.2

20 143.5        76.2 

2056.5     101.6 

3.4            76.2 

2196.6    101.6 

620.0                  76.2 

1580.0              101.6 

101.6 101.6

21 999.6       50.8

500.4        61.0 

587.8      40.64 

912.2         50.8

1260.0                40.6 

240.0                  50.8 

50.8 76.2 

22 348.1        50.8 

151.9        61.0 

311.0       30.48 

189.0        40.6 

500.0            30.5 50.8 76.2 

Table 7 Continued
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Pipe length (m) and/or diameter (cm) 

Pipe Present work Fujiwara and Khang 

(1990) 

Abebe and Solomatine 

(1999) 

Strategy (a) Strategy (b) GA ACCOL 

23 456.0         76.2

2194.1     101.6

245.7        76.2

2404.3     101.6

110.0                61.0 

2540.0      76.2 

76.2 101.6 

24 720.1         50.8

509.9        61.0 

685.2        76.2

544.8       101.6

110.0                40.6 

1120.0       50.8 

40.6 101.6 

25 1147.2       50.8

152.8        61.0 

1251.5      76.2

48.5        101.6

1070.0     40.6 

230.0            50.8 

50.8 101.6 

26 88.9         40.6 

761.1        50.8 

750.9        50.8

99.2          61.0

850                   30.5 30.5 61.0 

27 128.8         50.8

171.2       61.0 

222.4        30.5

77.6        40.6 

240.0                 50.8 

60.0                  61.0 

61.0 76.2 

28 210.4        76.2 

539.6       101.6

750.0        30.5

0.0            40.6

210.0            50.8 

540.0                61.0 

50.8 30.5 

29 149.0        40.6 

1351.0       50.8

3.07          30.5

1496.9      40.6 

250.0                40.6 

1250.0       50.8 

61.0 40.6 

30 464.7       40.6 

1535.3       50.8

1018.8      30.5

981.2       40.6

1160.0     40.6 

840.0            50.8 

76.2 101.6 

31 419.2       30.5 

1180.8        40.6 

1600.0     30.5

0.00          30.5

300.0                30.5 

1300.0       40.6 

76.2 40.6 

32 55.01        30.5 

95.0        40.6 

41.5        30.5 

108.5        40.6

150.0            30.5 76.2 50.8 

33 534.2      30.5 

325.9      40.6 

442.6       40.6

417.4         50.8 

860.0            30.5 76.2 76.2 

34 461.9        40.6 

488.1        50.8 

191.9        50.8

758.1       61.0

60.0                    40.6 

890.0                  50.8 

30.5 61.0 

Cost ($) 7,086,466 6,142,063 5,562,000 7,000,000 7,836,000 

Table 7 Continued

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ce
.iu

st
.a

c.
ir

 o
n 

20
25

-0
7-

18
 ]

 

                            11 / 15

https://ijce.iust.ac.ir/article-1-216-en.html


120 International Journal of Civil Engineerng. Vol. 7, No. 2, June 2009

Diameter 
(cm) 

0 91.4 121.9 152.4 182.9 213.4 243.8 274.3 

Cost ($/m) 0 306.8 439.6 577.4 725.1 876.0 1036.7 1197.5 

Diameter 
(cm) 

304.8 335.3 365.8 396.2 426.7 457.2 487.7 518.2 

Cost ($/m) 1367.1 1538.7 1712.6 1893.0 2073.5 2260.5 2447.5 2637.8 

Table 8 Pipe cost data for the New York tunnel network

Pipe data Nodal  data 

Pipe Start Node End node Length 

(m) 

Existing diameter 

(cm) 

Node Demand 

(l/s) 

Min. total  head 

(m) 

1 1 2 3535.6 457.2 1 reservoir 91.4 

2 2 3 6035.0 457.2 2 2616 77.7 

3 3 4 2225.0 457.2 3 2616 77.7 

4 4 5 2529.8 457.2 4 2497 77.7 

5 5 6 2621.2 457.2 5 2497 77.7 

6 6 7 5821.6 457.2 6 2497 77.7 

7 7 8 2926.0 335.3 7 2497 77.7 

8 8 9 3810.0 335.3 8 2497 77.7 

9 9 10 2926.0 457.2 9 4813 77.7 

10 11 9 3413.7 518.2 10 28 77.7 

11 12 11 4419.6 518.2 11 4813 77.7 

12 13 12 3718.5 518.2 12 3315 77.7 

13 14 13 7345.6 518.2 13 3315 77.7 

14 15 14 6431.2 518.2 14 2616 77.7 

15 1 15 4724.4 518.2 15 2616 77.7 

16 10 17 8046.7 182.9 16 4813 79.2 

17 12 18 9509.7 182.9 17 1628 83.1 

18 18 19 7315.2 152.4 18 3315 77.7 

19 11 20 4389.1 152.4 19 3315 77.7 

20 20 16 11704.3 152.4 20 4813 77.7 

21 9 16 8046.7 182.9 

Table 9 Pipe and nodal data for the New York tunnel network.
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by a general purpose optimisation code. The

performance of the method was improved by an

iterative use of the penalty parameter, which

significantly reduces the design cost compared to

the conventional use of the penalty method. The

method was further improved by using a cubic

spline fit to continuously approximate the

discrete pipe cost function. Numerical

experiments showed that the use of cubic spline

fit reduces the design cost compared to the design

obtained via the use of conventional least-squares

fit. Simplicity of both the basic method and the

modification presented herein as well as

comparability of the results with other methods

Pipe length (m) and/or diameter (cm) 

Pipe Present work Gessler 

(1982) 

Morgan and Goulter 

(1985) 

Bhave 

(1985) 

Dandy et al. 

(1996) 
Strategy (a) Strategy  (b) 

1 0 0 0 0 0 0 

2 0 0 0 0 0 0 

3 0 0 0 0 0 0 

4 0 0 0 0 0 0 

5 0 0 0 0 0 0 

6 0 0 0 0 0 0 

7 0 0 254 365.8 0 0 

8 0 0 254 0 0 0 

9 0 0 0 0 0 0 

10 0 0 0 0 0 0 

11 0 0 0 0 0 0 

12 0 0 0 0 0 0 

13 0 0 0 0 0 0 

14 4087.3         213.4 

2344.2      243.8

0 0 0 0 0 

15 0  2832.9          43.8

1891.5          274.3 

0 0 136.4 304.8

16   2826.4        365.8 

5220.3        396.2 

 695.8           213.4 

7350.9        243.9 

 243.8 87.4 213.4 

17  1618.7        274.3

7891.1          304.8 

 110.8          213.4 

9399.0        243.9 

254 243.8 99.2 243.9 

18 3179.7          152.4 

4135.5         182.9

116.1            182.9 

7199.1         213.4

203.2 213.4 78.2 213.4 

19 0 529.3           182.9 

3859.9         213.4

203.2 152.4 54.4 182.9 

20 912.5            243.8 

10791.9        274.3 

0 0 0 0 0 

21 2770.8        365.8 

5275.9        396.2 

2096.9         152.4

5949.8        182.9 

203.2 213.4 81.5 182.9 

Cost ($M) 66.90 38.95 41.80 39.20 40.18 38.80 

Table 10 Optimal pipe diameters obtained by various methods for the New York tunnel network.

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ce
.iu

st
.a

c.
ir

 o
n 

20
25

-0
7-

18
 ]

 

                            13 / 15

https://ijce.iust.ac.ir/article-1-216-en.html


122 International Journal of Civil Engineerng. Vol. 7, No. 2, June 2009

makes it a suitable choice for engineering use.

Research into finding ways to use the same

method for discrete optimization of pipe

networks is underway.
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