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Abstract: A parametric study is performed to assess the influence of the tension reinforcement
index, (0 = p fy/f 'o). and the bending moment distribution (loading type) on the ultimate

deformation characteristics of reinforced concrete (RC) beams. The analytical results for 15 simply
supported beams with different amounts of tension reinforcement ratio under three different loading
conditions are presented and compared with the predictions of the various formulations and the
experimental data, where available. The plastic hinge rotation capacity increases as the loading is
changed from the concentrated load at the middle to the third-point loading, and it is a maximum
for the case of the uniformly distributed load. The effect of the loading type on the plastic rotation
capacity of the heavily reinforced beams is not as significant as that for the lightly reinforced beams.
Based on the analytical results obtained using the nonlinear finite element method, new simple
equations as a function of the tension reinforcement index, @, and the loading type are proposed.
The analytical results indicate that the proposed equations can be used for analysis of ultimate
capacity and the associated deformations of RC beams with sufficient accuracy.
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1. Introduction

It is well established that the inelastic
behavior of Reinforced Concrete (RC)
sections leads to a redistribution of moments
and forces, resulting in an increased load
carrying capacity of the members and the
indeterminate structure. As the applied load
is increased, hinges start forming in
succession at locations where the hinge
moment capacity is reached; with further
increase in the applied load, these hinges
continue to rotate until the last hinge forms
converting the structure into a mechanism
resulting in failure.

Kheyroddin has reviewed the various limit
design methods which have been proposed
based on the concepts of limit equilibrium,
serviceability, and rotational compatibility in
terms of the available rotation at the plastic
hinge being larger than the rotation required

to form a collapse mechanism [1].

The plastic hinge rotation, 6, of RC beams
depends on a number of parameters including
the definition of yielding and ultimate
curvatures, section geometry, material
properties, compression and tension
reinforcement ratios, transverse
reinforcement,  cracking and tension-
stiffening, the stress-strain curve for the
concrete in tension and compression, the
stress-strain curve for the reinforcing steel,
bond-slip characteristics between the
concrete and the reinforcing steel, support
conditions and the magnitude and type of
loading, axial force, width of the loading
plate, influence of shear, and the presence of
column.  Several researchers have
investigated this problem; however,
individual researchers differ even on the
basic definition of what is to be taken as the
plastic rotation capacity. Some of these
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contradictions among the various researchers
are partly due to the definition of the ultimate
limit state, and the different test conditions
such as the specimen dimensions, loading
plate geometry, and the method of
application and type of loads on the beam.
Some equations have been proposed to
calculate the plastic hinge length and the
inelastic rotation capacity; however, there is
no general agreement on the techniques to
evaluate the inelastic behavioral
characteristics of indeterminate concrete
structures.

The conditions at the ultimate load stage of a
typical cantilever beam subjected to uniform
load are shown in Fig. 1. For values of loads
smaller than the yielding moment, M,, the
curvature increases gradually from the free
end of a cantilever (point A) to the column
face (point B). There is a large increase in the
curvature at first yield of the tension steel. At
the ultimate load stage, the value of the
curvature at the support increases suddenly
so that it causes large inelastic deformations.
Since the concrete between the cracks can
carry some tension (tension-stiffening), the
curvature fluctuates along the beam length.
Each of the peaks of curvature corresponds to
a crack location. The actual distribution of
curvature at the ultimate load stage can be
idealized into elastic and inelastic (plastic)
regions [Fig. 1(c)], thus the total rotation, 0,
over the beam length can be divided into
elastic, 6,, and plastic, 9p, rotations. The
elastic rotation, 6,, (until yielding of steel)
can be obtained using the curvature at
yielding. With reference to Fig. 1, the plastic
hinge rotation, 6,, on each side of the critical
section, can be determined as:

6, = [ o -9, Jx (1)

In which /, is the beam length over which the
bending moment is larger than the yielding
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Fig.1 Schematic Curvature Distribution along Beam at
Ultimate Stage:
(a) Beam, (b) Bending Moment Diagram,
(c) CurvatureDiagram

moment, M,, or the distance between the
critical section and the location where
tension steel first yields (Fig. 1) and ¢(x) is
the curvature at a distance x from the critical
section at the ultimate load stage.

The shaded area in Fig. 1(c) is the plastic
(inelastic) rotation, 6, that occurs in addition
to the elastic rotation at the plastic hinge at
the ultimate load stage. The plastic hinge
rotation can be determined either by the
calculation of shaded area or by an
equivalent rectangle of height (¢,—¢,) and
width /,. Using Eq. 1, the equivalent plastic

hinge length, /,, can be defined as:

l, = !
b~ 9,
Therefore, the value of plastic hinge rotation,

6,, at ultimate stage can be calculated easily
by the following well-known equation:

[ oo -9, )ax )

6,=0,-9,)1,=0,1, 3)

Where ¢, and ¢, are the curvatures at the
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ultimate load and yielding, respectively and
[, 1s the equivalent length of the plastic hinge
over which the plastic curvature, (¢,=¢,—9,),
is assumed to be constant. Equation 3 results
in the same area as the actual plastic
curvature distribution (Shaded area in Fig. 1).
A survey of the literature shows that most
researchers first calculate the equivalent
plastic hinge length, /,, and then the plastic
rotation, 6, is determined using equation 3.

In this paper, a nonlinear layered finite
element program is used for determination of
the yielding length, plastic hinge length and
the plastic hinge rotation. In fact, at first the
plastic rotation is determined and then the
equivalent plastic hinge length is derived
only for comparison. The advantage of the
present study is that the yielding length and
the "exact" value of plastic rotation (shaded
area in Fig. 1b) can be determined with more
accuracy without using the concept of the
equivalent plastic hinge length. Further, a
parametric study is performed to examine the
influence of tension reinforcement index and
the loading type on the ultimate deformation
characteristics of RC beams and new
equations are developed to consider the
influence of the various parameters on the
calculation of the plastic hinge rotation.
Attention is focused on the plastic rotation
capacity at the ultimate limit state only.

2.Nonlinear Finite Element Program

A nonlinear finite element analysis program,
NONLACS2 (NONLinear Analysis of
Concrete and Steel Structures), developed by
Kheyroddin [1], is used to analyze the
selected RC beams. The program can be used
to predict the nonlinear behavior of any plain,
reinforced or prestressed concrete, steel, or
composite concrete-steel structure that is
composed of thin plate members with plane
stress conditions. This includes beams, slabs
(plates), shells, folded plates, box girders,
shear walls, or any combination of these
structural elements. Time-dependent effects
such as creep and shrinkage can also be
considered.

2.1. Concrete Properties

As shown in Fig. 2(a), the uniaxial stress-
strain curve of concrete adopted in this study
i1s made of two parts. The ascending branch
up to the peak compressive strength is
represented by the equation proposed by
Saenz [2]:

o= EOE . (4)
e M)
ESC gmax gmax

Where E, is the initial modulus of elasticity
of the concrete, E,, is the secant modulus of
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the concrete at the peak stress, o is the stress,
a is the strain, and ¢, 1s the strain at peak
stress. The descending or the strain-softening
branch is idealized by the Smith and Young
model [3]:

Uzac[gJexp(l—g) (5)

max max

Where o, is the compressive strength of the
concrete. For uniaxially loaded concrete, o,
is equal to /.. For high-strength concrete, the
compressive  stress-strain  response s
modeled using a modified form of the
Popovics' Equation (see [1]).

For analysis of most plane stress problems,
concrete 1s assumed to behave as a stress-
induced orthotropic material. In this study
the orthotropic constitutive relationship
developed by Darwin and Pecknold [4] is
used for modeling the concrete using the
smeared cracking idealization. The
constitutive matrix, D, is given by:

E  WwEE, 0
R 0 ©)
0 0 i(E, +E, - JEE,)

In which, E; and E, are the tangent module in
the directions of the material orthotropy, and
v is the Poisson's ratio. The orthotropic
material directions coincide with the
principal stress directions for the uncracked
concrete and these directions are parallel and
normal to the cracks for the cracked concrete.
The concept of the "equivalent uniaxial
strain" developed by Darwin and Pecknold
[4] 1s utilized to relate the increments of
stress and strain in the principal directions.
Therefore, stress-strain curves similar to the
uniaxial stress-strain curves can be used to
formulate the required stress-strain curves in
each principal direction.

The strength of concrete, o, and the values

of E;, E, and v are functions of the level of
stress, and the stress combinations. The
concrete strength when subjected to biaxial
stresses is determined using the failure
envelope developed by Kupfer et al. [5]. The
values of E1 and E2 for a given stress ratio
(a =0,/0,) are found as the slopes of the
o;-¢; and o0,-¢, curves, respectively. For the
descending branches of both compression
and tension stress-strain curves, E; is set
equal to a very small number, 0.0001, to
avoid computational problems associated
with a negative and zero values for E;. The
concrete is considered to be crushed, when
the equivalent compressive strain in the
principal directions exceeds the ultimate
compressive strain of the concrete, ¢,,. For
determination of the concrete ultimate
compressive strain, &.,, two models for
unconfined high and normal-strength
concrete [6] and confined concretes [7] are
implemented in the program.

For elimination of the numerical difficulties
after crushing (¢ >¢,,) and cracking of the
concrete (¢ >g,), a small amount of
compressive and tensile stress as a fraction of
concrete strength, y.f.. and y, f/, is assigned
(optional) at a high level of stress [Fig. 2(a)],
where parameters y. and y, define the
remaining compressive and tensile strength
factors, respectively.

Cracking of the concrete 1s idealized using
the smeared cracking model, and is assumed
to occur when the principal tensile stress at a
point exceeds the tensile strength of the
concrete.

2.2. Reinforcing Bar Properties

The reinforcing bars are modeled as an
elastic strain-hardening material as shown in
Fig. 2(b). The reinforcing bars can be
modeled either as smeared layers or as
individual bars. In both cases, perfect bond is
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Fig.3 Some Typical Finite Elements in NONLACS2 Program

assumed between the steel and the concrete.

2.3. Finite Element Formulation

The element library includes plane
membrane, plate bending, one dimensional
bar, spring boundary elements as well as a
facet shell element which is a combination of
the plane membrane and the plate bending
elements. Figure 3 shows some of these
elements and the associated degrees of
freedom. The program employs a layered
finite element approach. The structure is
idealized as an assemblage of thin constant
thickness plate elements with each element
subdivided into a number of imaginary layers
as shown in Fig. 3(c). A layer can be either of
concrete, smeared reinforcing steel or a
continuous steel plate. Each layer is assumed
to be in a state of plane stress, and can
assume any state - uncracked, partially
cracked, fully cracked, non-yielded, yielded
and crushed - depending on the stress or
strain conditions. Analysis is performed
using an incremental-iterative tangent
stiffness approach, and the element stiffness
is obtained by adding the stiffness
contributions of all layers at each Gauss

quadrature point. The history, capability,
element library, constitutive models and the
limitations of the NONLACS2 program are
presented by Kheyroddin [1].

3. Analysis of Reinforced Concrete
Beam,C5

One simply supported beam, C5, subjected to
a midspan-concentrated loading tested by
Mattock [8] 1is analyzed wusing the
NONLACS2 program and a finite element
mesh with 88 elements (Fig. 4). This beam is
also used for further parametric studies. The
experimental material properties for the
concrete and the reinforcing steel are
presented in Table 1. Since the reinforcement
and the loading are symmetrical with respect
to the mid span, only one half of the beams is
modeled. The vertical loads are applied in 30
load steps with smaller increments of loads
being applied just before the beam reaches its
ultimate load stage. This would improve the
rate of convergence of the solution and the
accuracy in predicting the ultimate load. The
details of geometry, reinforcement, loading
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Table 1. Dimensions and Properties of Beam C5
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Fig.4 Geometry, Reinforcement Details and Mesh

Configuration for Beam C5
pattern and finite element modeling of this
beam are shown in Fig. 4. Since this
phenomenon represents a plane stress
condition, only one layer of concrete is
sufficient. The longitudinal reinforcements
are lumped in a single bar at the reference
surface as a bar element. The stirrups are
modeled as smeared steel layers on the two
sides of the beam.

In order to determine accurate values of the
yielding length and plastic rotations near the
critical section (midspan), a fine mesh
configuration with 172 elements is utilized
[Fig. 4(b)]. In other words, nonlinear finite
element analysis of selected beams have been
carried out using the NONLACS2 program
using small elements (35X35 mm) in the
neighborhood of the "critical" section, and
progressively increasing to, 70X70 mm,
elements in the neighborhood of the zero
moment location at the support. To evaluate
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Fig.5 Comparison of Experimental and Analytical Results
for Beam C5; Load-Deflection Curve
the accuracy of the 172-element model, beam
C5 is analyzed using the NONLACS2
program. The load-deflection and moment-
curvature curves obtained from the program
are compared with the experimental findings
in Fig. 5. The computed results from the
beam idealization using 172 elements shows
excellent agreement with the experimental
results. In this model, the load corresponding
to the initiation of crack in the structure is
14.23 kN, when the first crack occurs in the
beam. The experimental values of loads for
yielding of steel reinforcement and crushing
of the concrete at the ultimate load are
P;=115.29 kN and P,=121.79 kN, while the
analytical yielding and ultimate loads are
118.76 kN and 119.2 kN, with discrepancies
of +3 and -2 percent from experimental
results, respectively, showing excellent
agreement with the experimental results (Fig.
5.). The analytical yielding and ultimate
deflections are 10.95 mm and 40.64 mm with
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Table 2 Details of Mattock Beams Used in Parametric Study

Parameters Studied

Type of Loading

p

Concentrated Loads

Loading Type

Uniform Loads

Loading Type

Third-Point Loadings

Table 3 Analytical Results Obtained Using the NONLACS2 Program (Group No. 1)

4,

(mm)

9,
(10°
rad/mm)

¢H

(10°

rad/mm)

40.64

1.70

8.27

47.0

1.54

9.84

62.23

1.30

12.9

69.3

1.18

16.7

84.3

a deviation of -4 and -13 percent from the
experimental values of A,=11.38 mm and
A,=46.74 mm, respectively.

4. Parametric Study

For the parametric study, the C5 Mattock
beam, 152X280 mm (6 X 11 in), with a
tension reinforcement index of 0.412
subjected to a mid-span concentrated load, is
used in the study (Fig. 4). In addition, the
same beam is analyzed with four other
assumed tension reinforcement indices
(0.309, 0.206, 0.154, and 0.103). Table 2 lists
the parameters which are varied, together
with their designations, cross sectional
details, types of loading, concrete and steel
strengths, for the 15 beams (3 Groups)
investigated in this study. Each beam is
designated as MijF, where "i" is the group
number, "j" indicates the rank of the tension
reinforcement ratio in increasing order, and
"F" represents the use of the fine mesh with
172 elements.

1.02

224

5. Influence of Tension Reinforcement
Index, ®

The loaddeflection curves obtained from the
NONLACS2 program for the beams in
Group No. 1, are shown in Fig. 6, which
presents the results of five under-reinforced
beams with different values of the tension
reinforcement index (0 = p Jf, /f"). The
analytical results including the yielding and
ultimate deflections and curvatures, and
ductility ratios for these beams are also
presented in Table 3. The failure mode is
flexural for all of the beams, i.e., steel yields
first at the bottom at midspan and then the
concrete crushes at the top of the beam at
midspan. The cracking, yielding and the
ultimate loads increase with the value of .
The yielding deflection increases with an
increase in the tension reinforcement index.
An increase in @ by about 50 percent
increases the yielding deflection by about 18
percent. The ultimate deflection and the
deflection ductility ratio, u AZAy/ A,
decrease with an increase in the tension
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Fig.6 Load-Deflection Curves at Mid-Span for Beams
with Different Reinforcement Index (Group No. 1)

reinforcement index. The ultimate deflection
for the beam M11F with ©®=0.103 is 84.3 mm
which is 79 percent higher than that for the
beam M14F with @ = 0.309. The deflection
ductility ratio varies between 3.71 to 15.1, as
o changes from 0.412 to 0.103.

5.1. Yielding Curvature

In reinforced concrete sections, the yielding
curvature ¢, is well defined as a curvature
when the tension reinforcement first reaches
the yield strength, f,. Most researchers (e.g.
[9]) used a linear distribution of concrete
stress and strain at the yielding stages (see
Fig. 7). In a more accurate model, a nonlinear
(curved) stress distribution should be used at
the yielding stage, especially when the
concrete compressive stress is high. As can
be seen from Fig. 7, the value of neutral axis
depth, ¢, calculated assuming a linear
distribution of concrete stress is smaller than
the "actual" value of the ¢ if the concrete
stress distribution is nonlinear, which would
lead to an underestimation of the curvature at
first yield, ¢,, and an overestimation of the
curvature ductility ratio, us=¢, / ¢, . Since
the NONLACS2 program considers the
nonlinear concrete compressive stress
distribution, the yielding curvatures obtained
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Fig.7 Variation of Yielding Curvature with Tension
Reinforcement Index, @

from the program are about 9 to 35 percent
greater than that the model assuming the
linear stress distribution. For beam C5
(MI15F) with ®=0.412, the analytical
yielding curvature is 1.7X10-5 rad/mm which
is very close to experimental value of
1.57X10>rad/mm with an 8 percent
discrepancy, while the model with a linear
stress  distribution underestimates the
yielding curvature by about 20 percent
(¢,=1.26X10-> rad/mm). As the tension
reinforcement index 1is increased, the
yielding curvature increases and the
difference between two models (linear and
nonlinear stress distributions) increases.

5.2. Ultimate Curvature and Ductility Ratio

In the ACI 318-02 Building Code[10], the
ultimate limit state is based implicitly on the
assumption of a limit strain for concrete
(¢,,=0.003), while in CEB Model Code [11]
it is based explicitly on both the steel and the
concrete ultimate strains i.e. g,=0.01, and
£.,~0.0035. Although the ultimate concrete
strain values are satisfactory for the
evaluation of the ultimate strength, they are
very conservative for deformation analysis
and moment redistribution. The ultimate steel
strain limitation of ¢,=0.01 in the CEB

Su
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Table 4 Comparison of Existing &, and 6, Formulations (6, is the Plastic Rotation on One Side of Section)

Researcher(s) Loading type

Expression for 6,

Present study 1 1

~ [ oo -9, Jax

Baker and
Amarakone
[16]

zy -
6, =0.8(¢,, — €, )k k; (E) 5 (kky=0.5)

Ea=0.0015 [ 1+150 p, +( 0.7-10 p, )1]
c

Mattock [8]

M. o-o [d d
=(9,-¢, ) 1+( 114 |=-1)(1- £ )<L
9,=(9, ¢‘M‘)( +( )(1-( o ) 162 ))2

£o = 0.003 + Q
Z
04 z
6,= — ) 1+—= = )(—=
(9, - ¢ )( N )( )
Corley [171 | & A = 0003 +002 2 4 2Ly
z 20
For 2 <70:  6,=(0.39 —)(‘”—)”W z
l e o 800w’ ¢,
. _
F0r¢—w)70 (100 )@, 2
Riva and Cohn
¢ 3.0 ¢/1u 09
. Zon . 6,=(0.58-
[18] For ¢ms7.0. 6,=( 800(0)(¢m P, 2
i 1 50 65 9,
e F N 70: e T
or g 0= 00 10009, I

Model Code [11] is excessively conservative,
while the absence of a steel strain limitation
in the ACI 318-02 [10] and the CSA Standard
CSA A23.3-M94 [12] i1s unconservative. The
most common definition adopted in the
literature is that the ultimate limit state
corresponds to the maximum moment
capacity of the section (i.e. M /3¢=0).

Based on the experimental data reported by
Mattock [8], the concrete ultimate
compressive strain, acu, is selected equal to
0.0078. The most widely wused g,
formulations available in the literature are
presented in Table 4. The values of
£.,=0.0057, ¢.,,=0.012, and ¢,,=0.00645 have
been adopted from the works of Baker and
Amarakone, Mattock, and Corley (see Table 4).

Figure 8 shows the variation of analytical
ultimate compressive concrete strain, &,,, at
the top and the ultimate tensile steel strain,
&,,> at the bottom at midspan with respect to
o for beams in Group No. 1. The ultimate
compressive strain of concrete is larger than
0.0082 and can be as high as 0.0085. The
values of ¢, and g, decrease with an
increase in the value of . Riva and Cohn
[13] arrived at a similar conclusion from their
analyses. As can be seen from Baker and
Amarakone's equation (Table 4), with an
increase in the tension reinforcement index,
the neutral axis depth, ¢, increases and
consequently the value of acu decreases. All
other equations for ¢, estimate constant
values of ¢, regardless of the amount of
tension reinforcement index. The ultimate
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Fig.8 Effect of o on Ultimate Concrete and Reinforcing Steel Strains (Group No. 1)

steel tensile strain at the bottom of the beams
at midspan, as shown in Fig. 8, varies from
0.0115 to 0.049, as the tension reinforcement
index changes from 0.412 to 0.103.

The neutral axis depth, ¢, is determined from
the compatibility of the strains at the section.
The ultimate curvature is then calculated as
the ratio of ultimate concrete compressive
strain at the top of beam to the neutral axis
depth when the failure of structure occurs,
i.e. ¢,=¢.,/c . The influence of the tension
reinforcement index on the ultimate
curvature and curvature ductility ratio,
Ho =0y / ¢, for Group No. 1 are shown in
Figures 9 and 10, respectively. For
comparison, the ultimate curvatures obtained
using NONLACS2 program, Mattock's
equation (Table 4), Corley's equation (Table
4) and the ACI method are presented. The
neutral axis depth for each method is
calculated based on the assumptions relevant
to the method. For a given z/d ratio, the
ultimate curvature decreases with an increase
in the tension reinforcement index. The
curvature is inversely proportional to the
depth of the neutral axis, ¢, which varies
directly as the tension reinforcement index at
the ultimate limit state. The analytical results
are about 2.35, 1.31, and 0.84 times the

values obtained from the ACI, Corley's, and
Mattock's methods, respectively. The ACI
318-02 Building Code [10] predicts the
ultimate curvature very conservatively as
compared with the other methods. Although
the ultimate concrete compressive strain
value, ¢,,=0.003, is satisfactory for the
ultimate strength design, it 1is very
conservative for deformation analysis.
Mattock's method overestimates the ultimate
curvature compared with the analytical
results, because the concrete ultimate
compressive strain determined by Mattock's
equation (Table 4) is about 54 percent greater
than the analytical concrete compressive
strain value. For beam C5 (M15F), the value
of ¢, using NONLACS2 program is equal to
8.3X10-5 rad/mm, while the ACI, Corley's,
and Mattock's methods result in values of
2.4%10-° rad/mm, 5.5%X10-° rad/mm, and
9.3 X105 rad/mm, respectively. The experimental
value of the ultimate curvature for this beam
as reported by Mattock [8] is equal to
11.8 X105 rad/mm, respectively.

As can be seen from Fig. 10, the curvature
ductility ratio varies from 4.88 to 21.9, when
the value of @ changes from 0.412 to 0.1. The
figure shows that the curvature ductility
ratios for the various methods are distributed
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in the same manner as the ultimate curvatures
calculated using the same methods. This was
expected because the yield curvature is about
the same for all of the methods. The ACI
Code underestimates the curvature ductility
ratio (up to 2.5 times) compared with the
analytical results. For beam C5 (M15F), the
analytical, the ACI, Corley's, and Mattock's
methods have discrepancies of -36, -75, 44,
and -5 percent from the experimental value
of py=7.65 (Fig.10).

5.3. Plastic Hinge Rotation and Length

Figure 11 illustrates the method to determine
the analytical plastic rotation and the
equivalent plastic hinge length for the beam
M13F. First, the curvature along the beam is
obtained from the concrete strain values in
the compression zone and from the steel
strain in tension zone at the ultimate limit
state. Then, the plastic rotation, 6, is
obtained by integration, along the yielding
length, /, (where the curvature in the section
is higher than its yielding curvature, ¢,), of
the difference between the ultimate curvature
and the yielding curvature (Table 4). Here, 6,
refers to the plastic hinge rotation on one side
of the critical section. Finally, the equivalent

plastic hinge length, /,, can be calculated as
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—— == E== g eees Oreen

=4
#

w
o
T

30 -

25

20 |

15

Curvature Ductility Factor, 4,

10

0 0.1 0.2 0.3 04 0.5
Tension Reinforcement Index, ¢

Fig.10 Effect of Tension Reinforcement Index on the
Ductility Factor (Group No.1)

shown in Fig. 11(b).

The failure mechanism of beam MI13F
including the cracking of the concrete (solid
lines) and its crushing (small circles) is
shown in Fig. 11(a). The crushing of the
concrete is concentrated at the top near the
midspan or the critical section where the
spread of inelasticity commences. The
curvature increases linearly from the support
to the yielding point and then the curvature
suddenly increases and in the crushing
region, it is very close to the ultimate
curvature.

The spread of plasticity (yielding length),
ultimate curvature and consequently the
plastic rotation for the lightly reinforced
beam (MI12F) are greater than that for
heavily  reinforced beam  (MI15F).
Comparison of the beams M12F and M15F
indicates that an increase in @ by about 2.68
times decreases the yielding length and the
plastic rotation by about 20 percent and 50
percent, respectively (Table 3).

A comparison of the analytical plastic
rotation obtained from the NONLACS2
program with some models available in the
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literature is made here. The most widely used
0, formulations in Europe and North
America along with the formula used in the
present study are presented in Table 4. The
plastic rotations for the beams in Group No.
1 with z/d=5.5 using the NONLACS2, CEB-
FIP MC90 [14], Baker and Amarakone's,
Corley's, Mattock's and Riva and Cohn's
methods are plotted in Fig. 12. Since the
CEB, Corley, Mattock and Baker and
Amarakone expressions in Table 4 are based
on experiments mostly characterized by
z/d~5.0, and Riva and Cohn expression is
valid for any z/d values, therefore a
comparison among these models is
reasonable. It is noted that the plastic hinge
rotation obtained from Riva and Cohn's
model (Table 4) is the total inelastic rotation
from the onset of inelastic behavior, i.e.
cracking of concrete. For all of the other
methods including the present study, the
plastic hinge rotation is defined as the
rotation between the yielding and the
ultimate states. The parameters ¢,,, and ¢, in
Riva and Cohn's formula are measured from
the onset of cracking (¢,,) and are determined
using the NONLACS2 program. Compared
with the CEB-FIP MC90 [14], the analytical
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Fig.12 Comparison of Existing Plastic Hinge Rotation
Formulations for Simply Supported Beams Subjected to
Concentrated Load at Midspan (z/d=5.5)

results and Corley's theory are found to give
safe values except in one case (v =0.1) and
yet they are not as conservative as Baker and
Amarakone's and Riva and Cohn's
formulations. For @ values greater than 0.15,
the analytical results are close to the values
obtained from CEB-FIP MC 90. The first
branch of the CEB-FIP MC90 curve with a
positive slope represents the failure of the
tension reinforcement, and the second
branch, with negative slope, indicates failure
through the crushing of the concrete. The
plastic rotation capacity predicted by the
formula given by Riva and Cohn appear to
represent a fairly safe estimate of the actual
rotation capacities available up to the
maximum load. Mattock's equation gives
much higher values of the plastic rotation
compared with any other models considered;
this indicates that the expression given by
Mattock for calculation of ¢, tends to
overestimate the deformability of RC
sections. For beam C5 (MI15F), the
experimental plastic hinge rotation is 0.0249
rad, while the present study results in a value
of 0.013 rad. The CEB, Baker and
Amarakone's, Corley's, Mattock's and Riva
and Cohn's methods predict plastic hinge
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rotation values of 0.0072 rad, 0.0035 rad,
0.0092 rad, 0.017 rad, and 0.0098 rad,
respectively.

The above comparison indicates that the
experimental value is much higher than any
other models considered. The experimental
plastic rotation as reported by Mattock [§]
was obtained from the measured inelastic
deflection, &,, at midspan. The plastic
rotation was assumed to be concentrated at
the point of the maximum moment, and was
equal to tan‘l(ép / z). In fact, this assumption
overestimated the plastic rotation and is
independent of the shape of the bending
moment diagram. Comparison of Mattock's
experimental results with the experimental
work of other researchers [15] corroborates
the finding that Mattock's method results in
much higher plastic rotations.

After calculation of the plastic hinge rotation,
the analytical equivalent plastic length, /,, on
one side of critical section can be determined.
As mentioned earlier, this value is obtained
only for comparison with the other available
methods. As can be seen from Table 3, the
analytical value of /, is not constant for the
different values of the tension reinforcement
indices. It increases linearly from 158.8 mm
to 197.6 mm, as the value of @ changes from
0.103 to 0.412. The average value of the
analytical plastic hinge length /, is 174.9
mm, which is 69 percent of effective depth
(0.69 d). In the new equation proposed by
Baker and Amarakone (Table 4), /, increases
linearly with the c¢/d ratio. Riva and Cohn's
formulation result in the lowest values of
plastic hinge length and approximately the
same pattern as the analytical curve. The
Corley's, Mattock's, and Sawyer's theories
give a constant plastic hinge length
regardless of the reinforcement index, of
215.4 mm (0.85 d), 196.9 mm (0.78 d), and
168.2 mm (0.66 d), respectively. Based on

the above discussion, it can be concluded that
the rotation capacity of the plastic hinges in
RC beams can be predicted using
NONLACS2 program with sufficient
accuracy.

6. Influence of Bending Moment
Distribution (Loading Type)

In order to study the effect of the loading
type, three loading conditions are considered:
(1) concentrated load at midspan (linear
moment distribution) to achieve a rapid
moment variation as is observed at the
supports in continuous beams, (2) third-point
loading (linear moment distribution from the
support to the location of the load and a
constant moment between two loads), and (3)
uniformly distributed loading (nonlinear
moment distribution). The influence of the
bending moment distribution on the plastic
hinge rotation for Group Nos. 1, 2, and 3 is
shown in Fig. 13. For these groups, all of the
variables are the same, and the only
difference is in the type of loading. The
plastic hinge rotation increases as the loading
type is changed from the midspan
concentrated load, to the third-point loading,
and it is a maximum for the case of the
uniform load. The plastic hinge rotation for
beams subjected to uniform loads are always
greater than that for the same beams under
third-point loadings or concentrated load.

As can be seen from Fig. 13, 6, values for the
beam subjected to third-point loading are
larger than that for the beam loaded at
midspan, when the value of o is less than
0.38. Beyond w=0.38, the value of 6, for
third-point loaded beam tends to be slightly
less than the corresponding values for the
beam loaded at midspan. In fact, the plastic
rotation for the third-point loading depends
on the length of constant moment region and
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Fig.13 Influence of Different Loading Types on the Plastic
Rotation

the location of the plastic zone and the
crushing of the concrete within a narrow
area. This phenomenon will be explained
latter. Bosco et al. [19] compared the plastic
hinge rotations of simply supported beams
under two different loading conditions: (1)
three loads applied symmetrically with
respect to the midspan, and (2) midspan
concentrated load. They arrived at the same
conclusion as in the present study. The plastic
hinge rotations of lightly reinforced beams
under three point loads were higher than that
the beams loaded under central loads, while
in the heavily reinforced beams, the plastic
hinge of concentrated loaded beams were
greater.

For two extreme values of o, the effect of the
loading type is discussed. For beam with
®=0.103, uniformly distributed loads on a
simply supported beam lead to 6, values
varying from 1.90 to 1.35 times as high as
those corresponding to the beams loaded
with a midspan concentrated load or a third-
point loading on the same beam, respectively.
These ratios for the heavily reinforced beam
with @ =0.412 are 1.59 and 0.88. Thus it can
be concluded that the effect of the loading
type on the plastic rotation capacity of
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Fig.14 Variation of Yielding Length with Respect to
Tension

heavily reinforced beams is not as significant
as for the lightly reinforced beams. For the
beam MS8I1F (w = 0.412), Riva and Cohn's
formula (Table 4, for uniform loads) predicts
the plastic hinge rotation equal to 0.064 rad,
which is very close to the analytical value of
0.070 rad.

The variation of 6, values for the differently
loaded beams can be explained by the
differences in the bending moment diagram
and the yielding length, /,, for each type of
loading. Figure 14 shows that, with the same
tension reinforcement index, the yielding
length of the beam under a central load is less
than that under uniform or third-point loads,
leading to a smaller plastic rotation. Beams
under uniform load show a considerable
increase in the yielding length and the zone
of plasticity. This is due to the smaller
moment gradient (nonlinear moment
distribution) in the neighborhood of the
critical section.

On the other hand, the bending moment
distribution will also influence the
distribution of curvature along the length of
the beam. Figure 15 shows the variation of
curvature over half length of beams with
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®=0.412 subjected to different loading
types. Although the yielding length for the
beam subjected to third-point loading is
higher than that for the beams subjected to
uniform and concentrated loads, localization
of the plastic zone and the crushing of
concrete, cause a smaller value of 6, even
less than that the beam subjected to
concentrated load.

Although it has become common practice to
use the terms "plastic hinge" and "critical
section" or concentration of plastic rotations
at the critical sections, the properties of the
plastic hinge are not the properties of
individual critical sections but they represent
integrated curvature values over the length of
the plastic hinge. As shown here, the loading
type has a significant effect on the plastic
hinge rotation and length, and the assumption
of a constant plastic hinge length implies that
the effects of the structural layout, magnitude
and the type of load on the inelastic rotation
have been neglected.

6.1. Proposed Equations

The relationship between the three different
loading types at the ultimate load stage can
be defined as:

o 3+ Group Ne.1 Group No.2 Group No.3
n Concenirated Loads — Uniform Laads  Third-paint Loadings
L e * ]
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Fig.16 Analytical and Estimated Values of Plastic

Rotations
o _ 0[’ (Unif ) _ lP(Unif-)
u(Unif.) — - l
p (Conc.) p (Conc.) (7)
_ H[J(Third.) _ lp (Third.)
au(Third.) - 0 - l
p (Conc.) p (Conc.)

Where «,, is the loading type factor at the
ultimate load stage. The variation of ¢, with
respect to the tension reinforcement index is
shown in Fig. 16. Regression analysis of the
results of the parametric study shows that the
loading type factor can be expressed in term
of the tension reinforcement index as:

For uniform loads, with 0.1= @ =0.4:

Cyomipy = (2.0-w) (8)

For third-point loadings, with 0.1= o =0.4:
Qo thiray = 1.51.0-w) ©

The analytical values of the plastic hinge
rotations obtained from the NONLACS2
program, 6,.,), and the values estimated
using equations 6.2 and 6.3, 0,.), are
compared in Table 5. The comparison is
based on the relative error which is defined
as:

9 st _9 an
ERR: p (est.) p(anl.) (10)

p(anl.)
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Group No. 1

(Concentrated Loads)

Group No. 2
(Uniform Loads)

Group No. 3
(Third-Point Loadings)

Table 5 Analytical and Estimated Values of Plastic Rotation, 6, (rad), for Different Loading Types.

NONLACS2

NONLACS2

Estimated

NONLACS2

Estimated

ERR

(Eq. 8)

(Eq. 9) %

0.013 0.021 0.0206

0.011 0.0114 3.63

0.0148 0.0245 0.025

0.017 0.0153 -9.76

0.020 0.034 0.0359

0.025 0.024 -4.0

0.026 0.0494 0.048

0.034 0.033 -2.9

0.034 0.070 0.065

The maximum error between analytical and
estimated values is 9.76 percent. The average
value of the ratios of the proposed - to -
analytical value of the plastic rotations for
the beam subjected to uniform loads is found
to be 0.991 with a standard deviation of
0.0486. The average value and the standard
deviation for the proposed - to - analytical
plastic rotations ratio for beam under third-
point loadings are 0.965 and 0.0485,
respectively. This indicates that the proposed
equation predictions are in good agreement
with the analytical results as shown in Fig.16.
As a final remark, it is worth nothing that the
reinforcement index and the type of loading
are important factors to be considered in
evaluating the rotation capacity of plastic
hinges. The proposed equations can be used
in any limit design method to evaluate the
plastic hinge rotations and other deformation
characteristics at the ultimate load when the
statically indeterminate system transforms
into a collapse mechanism.

7. Conclusions

Based on the analytical results, the following
conclusions can be drawn:

1. The cracking, yielding and the ultimate
loads increase with the tension reinforcement
index, . The ultimate deflection and the

0.048 0.046

deflection ductility ratio, u,=A, / A,
decrease with an increase in the value of .
The deflection ductility ratio varies between
3.71 to 15.1, as @ changes from 0.412 to
0.103.

2. At the yielding stage, the value of the
neutral axis depth, ¢, is smaller than the
"actual" value of the depth of the
compression zone, ¢, if the concrete stress
distribution is assumed to be nonlinear,
which will lead to an underestimation of the
curvature at the first yield, ¢, and an
overestimation of the curvature ductility

ratio, g =¢, / 9, -

3. At the ultimate load stage, the values of ¢,
and &, decrease with an increase in the value
of w. For a given z/d ratio, the ultimate
curvature decreases with an increase in the
tension reinforcement index. The analytical
ultimate curvatures are about 2.35, 1.31, and
0.84 times the values obtained using the ACI,
Corley's, and  Mattock's  methods,
respectively.

4. The Corley's, Mattock's, and Sawyer's
theories give a constant plastic hinge length
regardless the reinforcement index, while the
analytical value of /, and the value of /,
obtained from Baker and Amarakone's, and
Riva and Cohn's formulations is not constant
for different values of tension reinforcement
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indices. The average value of the analytical
plastic hinge length on one side of the critical
section is 69 percent of the effective depth.

5. The plastic hinge rotation increases as the
loading is changed from the concentrated
load to the third-point loading, and it is a
maximum for the case of the uniformly
distributed load. For the beam with »=0.103,
uniformly distributed loads on a simply
supported beam lead to 6, values varying
from 1.90 to 1.35 times as high as those
corresponding to the beams loaded with a
midspan concentrated load or a third-point
loadings on the same beam, respectively. It
can be concluded that the effect of the
loading type on the plastic rotation capacity
of the heavily reinforced beams is not as
significant as that for the lightly reinforced
beams. It is concluded that the reinforcement
index and the loading type have a significant
effect on the plastic hinge rotation and
length.

6. The analytical results indicate that the
NONLACS2 program and the proposed
equations (as a function of tension
reinforcement index, @, and the loading type)
can be used for analysis of the ultimate
capacity and the associated deformations of
RC beams with sufficient accuracy.

8. References

[1] Kheyroddin, A., (1996). "Nonlinear
Finite Element Analysis of Flexure-
Dominant  Reinforced  Concrete
Structures", Ph.D. Thesis, Department
of Civil Engineering and Applied
Mechanics, McGill  University,
Montreal, Canada, 290p.

[2] Saenz, L.P. (1965). "Equation for the
Stress-Strain Curve of Concrete in

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Uniaxial and Biaxial Compression of
Concrete", ACI Journal, V. 61, No. 9,
pp. 1229-1235.

Smith, G. M., and Young, L. E. (1955).
"Ultimate Theory in Flexure by
Exponential Function", Journal of

American Concrete Inst., V. 52, No. 3,
pp. 349-359.

Darwin, D., and Pecknold, D.A.
(1977). "Nonlinear Biaxial Stress-
Strain Law for Concrete", ASCE
Journal of the Engineering Mechanics
Division, V. 103, No. EM4, pp. 229-
241.

Kupfer, H. B., Gerstle, K. H., and
Risch, H. (1969). "Behavior of
Concrete under Biaxial Stresses,"
Journal of ACI, V. 66, No. 8, pp. 656-
666.

Pastor, J.A. (1986). "High-Strength
Concrete Beams", Ph.D. Thesis,
Cornell University, New York, Ithaca.

Scott, B.D., Park R., and Priestly,
M.J.N. (1982). "Stress-Strain Behavior
of Concrete Confined by Overlapping
Hoops at Low and High Strain Rates",
ACI Journal, V. 79, No. 1, Jan./Feb.,
pp. 13-27.

Mattock, A.H. (1964). "Rotational
Capacity of Hinging Regions in
Reinforced Concrete Beams",
Proceedings of the International
Symposium on Flexural Mechanics of
Reinforced Concrete, Miami, Florida,
ACI SP-12, pp. 143-181.

Park, R., and Paulay, T. (1975).
"Reinforced Concrete Structures", John
Wiley and Sons, New York.

46 International Journal of Civil Engineerng. Vol. 5, No. 1, March 2007


https://ijce.iust.ac.ir/article-1-312-en.html

[ Downloaded from ijce.iust.ac.ir on 2026-02-03 ]

[10]

[11]

ACI Committee 318 (2002). "Building
Code Requirements for Structural

Concrete  (ACI  318-02) and
Commentary (ACI 318R-02)",
American Concrete Institute,

Farmington-Hills, Michigan, 2002, 443
p.

CEB-FIP (1978), "Model Code for
Concrete Structures", Paris.

[17]

[18]

Corley, W.G. (1966). "Rotation
Capacity of Reinforced Concrete
Beams", Proceedings of the ASCE
Structural Journal, V. 92, No. ST-4, pp.
121-146.

Riva, P., and Cohn, M.Z. (1994).
"Rotation Capacity of Structural
Concrete  Members", Magazine
Concrete Research, V. 46, No. 168, pp.
223-234.

[12] Canadian Standards Association
(1994), Code for the Design of [19] Bosco, C., Carpinteri, A., and
Concrete Structures for Buildings. Debernardi, P.G. (1990). "Fracture of
CAN3-A23.3-M94, Rexdale, ON. Reinforced Concrete: Scale Effects and

Snap-Back  Instability",  Engng.

[13] Riva, P, and Cohn, M.Z. (1990), Fracture Mechanics, V. 35, pp. 665-

"Engineering Approaches to Nonlinear 677.

Analysis of Concrete Structures",

ASCE J. Struct. Engng. Div., V. 116, [20] Shayanfar, M.A., Kheyroddin, A., and

No. &, pp. 2162-2186. Mirza, M.S. (1997), "Element Size
Effects in Nonlinear Analysis of

[14] CEB-FIP Model Code 1990- Chapter Reinforced Concrete Members",
1-3, Final Draft. CEB Bull.d' Inf, Computers & Structures, Vol.62, No.2,
1991, No. 203. 339-352.

[15] Siviero, E. (1974). "Rotation Capacity = [21] Bazant, Z. P., and Nova'k, D. (2000).
of Mono Dimensional Members in "Energetic-Statistical Size Effect in
Structural Concrete", CEB Bull. d'Inf, Quasi-Brittle  Failure at Crack
No. 105, pp. 206-222. Initiation", ACI Mater. J., 97(3),

381-392.

[16] Baker, A.L.L., and Amarakone, A.M.N.

(1964). "Inelastic Hyper Static Frames ~ [22] Hillerborg, A. (1990). "Fracture
Analysis", Proceedings of the Mechanics Concepts Applied to
International Symposium on Flexural Rotational Capacity of
Mechanics of Reinforced Concrete, Reinforced Concrete Beams",
Miami, Florida, ASCE 1965-50, ACI Eng.Fract.Mech, 53(1/2/3), 233-240.
SP-12, pp. 85-142.

International Journal of Civil Engineerng. Vol. 5, No. 1, March 2007 47


https://ijce.iust.ac.ir/article-1-312-en.html
http://www.tcpdf.org

