
Introduction

Over the last decade, meshless methods for

the solution of partial differential equations

(PDEs) have become increasingly popular.

The main idea of these methods is to

approximate the unknown field by a linear

combination of shape functions built without

having recourse to a mesh of the domain.

Instead, nodes are scattered in the domain

and a certain weight function with a local

support is associated with each of these

nodes. The shape function associated with a

given node is then built considering the

weight functions whose support overlaps the

one of the weight function of this node; thus,

there is actually no need to establish

connectivities between the different nodes as

in the finite element method. Although the

construction of the shape functions is more

expensive for meshless methods than for the

latter one, they are prime methods for

problems with moving boundaries because

no remeshing of the domain is necessary.

In order to overcome the disadvantages of

mesh-based numerical methods, such as the

finite element method (FEM), various

meshless methods have been developed and

successfully used in solving problems

governed by ordinary differential equations

(ODEs) or partial differential equations

(PDEs). The meshless methods have been

developed in recent years  are smooth

particle hydrodynamics (SPH) [1], the

element free Galerkin (EFG) method[2,3],

the reproducing kernel particle (RKP)

method[4], the finite point (FP) method[5],

the hp clouds method[6], meshless local

Petrov-Galerkin (MLPG) method[7-10],

local boundary integral equation

(LBIE)method[8-12], least square

collocation meshless (LSCM) method[13],

point weighted least square (PWLS)

method[14].

In this research a meshless method namely,

discrete least square method (DLSM), is

proposed. In this method computational

domain is discretized by some nodes and

then the set of simultaneous equations are

built using moving least square (MLS) shape
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functions and least square technique. The

presented method does not need any

background mesh therefore it is a truly

meshless method and the stiffness matrix is

symmetric. In section 2 constructing of

moving least square is explained, in section 3

Discrete least square method (DLSM) (for

disretization) is elaborated. At last a

numerical example and a seepage problem

are solved by this approach.

Moving least square shape functions

The most frequently used approximation in

meshless methods is the moving least squares

interpolant in which the unknown function φ
is approximated by:

(1)

Where PT(X) is a polynomial basis in the

space coordinates, and m is the total number

of the terms in the basis. For a 2D problem

we can specify P=[1 x y x2 xy y2] for m=6.

a(x) is the vector of coefficients is and  can be

obtained by minimizing a weighted discrete

L2 norm as follows:

(2)

Where wj ( X - Xj ) is the weight function and

uhj is the value of the nodal parameters at

node j.  wj ( X - Xj ) is built in such a way that

vanishes outside a region Ωj surrounding the

point j. This local domain is termed as

influence domain of node j. Influence

domain can have different shapes and sizes

and its size can be different for different

nodes as illustrated in Fig. (1). In this study

circular influence domain with radius dwj
and cubic spline weight function is

considered as defined by Eq. (3):

(3)

Where d-=DX-XjD/dw and dw is the size of

influence domain of node j.

Minimization of equation (2) leads to

(4)

where 

(5)

B(X) = [w1(X-X1)P(X1), w2(X-X2)P(X2), ... ,

wn(X-Xn)P(Xn)]                                       (6)

Comparing equation (4) with the well known

form of equation (7) yields to equation (8)
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Fig.1. Schematic presentation of influence domain of 2 nodes
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(7)

(8)

NT(X) contains the shape functions of nodes

at point (X) witch are called moving least

square (MLS) shape functions.

Discrete least square method (DLSM) 

Consider the following (partial) differential

equation

A(φ) + f = 0 in Ω (9)

subject to appropriate Drichlet and Neuman

boundaries.

φ − φ-= 0  on Γ2 (10)

B(φ) − t-= 0 on Γ1 (11)

Where A, B are (partial) differential

operators, and f represents external forces or

source term on the problem domain.

Upon disretization of the problem domain

and its boundaries using Equation (7) defined

as the residual of partial differential equation

at a typical node k is:

(12)

As discrete least square method uses strong

formulation, to satisfy Neuman boundary

condition a penalty formulation is required.

The residual of Neuman boundary condition

at typical node k on the Neuman boundary

can be written as:

(13)

and finally as moving least square (MLS)

shape functions do not enjoy Kronecker

Delta property, to satisfy Drichlet boundary

condition a penalty formulation is required.

The residual of Drichlet boundary condition

at nodes on the Drichlet boundary could be

stated by:

(14)

where n is the total number of nodes and n1
and n2 are the number of nodes on Drichlet

and neuman boundaries respectively. A

penalty approach is used to form the total

residual of the problem defined as:

(15)

(16)

(17)

where α2 and α1 are penalty coefficient for

Drichlet and Neuman boundary conditions

respectively. Minimization of the functional

with respect to nodal parameters

( φi , i=1,2,...,n ) leads to the following

system of equations.

Kφ = F (18)

where
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(20)

the system of equations is clearly allowing

for efficient solvers to be used.

Numerical examples

To illustrate the accuracy and efficiency of

the proposed method, some two dimensional

numerical examples are considered.

In all the examples P is considered as

P = [1  x  y  x2 xy  y2]  and the dw for each

node is calculated in such a way that each

point is supported by at least 20 nodes. 

1. 2D Poisson partial differential Equation

Consider the 2D Poisson equation defined in

a square domain which is taken from [14]:

, 0 O x , y O1 (21)

With the following Drichlet and Neumn

boundary condition

(22)

(23)

Computational domain and boundary

conditions are illustrated in Fig. (2). The

exact solution of this problem can be easily

obtained 

The problem is discretized in 2 models. One

is 121 nodes distributed regularly in problem

domain and the other is 228 irregular nodes

generated by random.

Following error norms are defined as error

indicators in this paper:

(24)

137International Journal of Civil Engineerng. Vol. 5, No. 2, June 2007

∑

∑

∑

�

�

�

�

�

��

n

k
kki

n

k
kki

n

k
kkii

xxN

xtxNB

xfxNAF

1
2

1
1

1

)()(

)())((

)())((

��

�

Fig.2. Computational domain and boundary condition of example 1.
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(25)

(26)

In which uiexact and uinum are the exact

solution and the numerical solution of the

function at node i, respectively. ui,x and ui,y
are derivatives respect to x and y, N is the

number of nodes.

1.1  121 regular nodes

The computational domain illustrated in Fig.

(2) is discretized using 121 regularly

distributed nodes and the position of the

nodes are illustrated in figure (3). For

comparison the approximated solution and

exact solution at y=0.35 are presented in

figure (4), in figures (5) and (6)

approximated derivatives respect to x and y
are compared with their exact solutions.

as shown in figures (4) to (6) the

approximation for 121 uniformly nodes are

acceptable. By using equations (24) to (26)

error norms are calculated (0.0014422),

(0.0082645) and (0.0082645) for the solution

and derivative of the solution respect to x and

y respectively.
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N x
 0e x1e y1e

36 0.2 0.013178 0.027778 0.027778 
121 0.1 0.001442 0.008265 0.008265 
441 0.05 0.000133 0.002268 0.002268 

Table 1  sensitivity analysis on the number of nodes
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Sensitivity analysis is done on the number of

nodes. In this cases 36 nodes, 121 nodes and

441 nodes are considered, results are

presented in table (1) and convergence rate is

illustrated in figure (7).

1.2  282 irregular nodes

The above mentioned partial differential

equation (Eqs. 21-23) is solved using 282

irregularly distributed nodes to discretize the

computational domain and node positioning

is illustrated in figure (8). For comparison the

approximated solution and exact solution at

y=0.35 are presented in figure (9), in figures

(10) and (11) approximated derivatives

respect to x and y are compared with their

exact solutions.

2. Seepage problem

A typical problem of the flow through a

homogenous earthfill dam is considered here

as shown in figure 10. Dam’s height is 25

meters, upstream water height is 22 meters

and crest width is 3 meters. Problem domain

is discretized by 139 nodes in which 70

nodes are on the boundaries. First iteration

disretization is presented in Fig. (12). The

governing partial differential equation is
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Laplace partial differential:

(29)

and boundary conditions are as follow:

φ = 22 m on Γ1

cφ / cn = 0  and  φ = y     on Γ2

φ = y                                 on Γ3            (30)

cφ / cn = 0 on Γ4

Γ2 and Γ3 are not known a prior and should,

therefore, be obtained during the solution of

the problem. A common procedure to solve

this problem is an iterative method in which

the boundaries Γ2 and Γ3 are initially

guessed. With the boundary of the problem

domain defined, the resulting seepage

problem with Neuman boundary condition

on Γ2 is then solved to get the potentials at all

nodal points including the point used to
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define Γ2. The nodal potentials on Γ2 and Γ3

are then used to modify the position of the

free surface, and the new problem is solved

again. This procedure is continued until

convergence is achieved. Figure (14)

illustrates the convergence of Γ2 and Γ3

boundaries to their final positions.

Equipotentials and flow lines are presented in

figures (15) and (16) respectively.

Conclusion

A truly meshless method, discrete least
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square method (DLSM) is presented in this

paper. The problem domain would be

discretized by some nodes then using MLS

shape function with a least square technique

a symmetric stiffness matrix is constructed.

Results of numerical examples show a good

approximation for both regular and irregular

nodes positioning. Increasing of nodes will

cause better approximations. And the

important characteristic of this method is

that, dose not need any background mesh for

integration.
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