
1. Introduction

Because of the special nature of plasticity

problems, some of the researchers have tried

to use mathematical programming methods

for solving them. In most of these researches,

elastic-perfectly-plastic state is studied.  Also

these methods are suitable for path

independent problems which are called

“Holonomic Behavior”.

One of the mathematical approaches is based

on the maximum plastic work principle. In

this technique, stresses are limited by yield

surface and increment of plastic strain work

is maximized simultaneously. Writing Kohn-

Tacker conditions, the flow rule and the yield

criteria appear [2]. In the mentioned

approach, unknown quantities consist of

stresses, Lagrangian coefficients and plastic

strains. In these cases, the usage of

mathematical methods is not economical,

because there are too many unknown

quantities. Therefore, in comparison with

general iterative approaches such as Newton-

Raphson, the mathematical programming

methods are seldom taken into

consideration [1].

Another method is deformation theory. It

solves plastic problems by piecewise yield

constraints and the associated flow rule

[4,3]. This technique has been used in

reliability analysis of elasto-plastic truss

systems [5]. In this method, only an elasto-

plastic analysis using total loads is done and

the history of displacements is not important.

In addition, unknown parameters are nodal

displacements and plastic ratio vectors.

Related equations can be solved by quadratic

or complementary programming methods.

However, in this approach, many variables

exist, and the run time is very long.

Nonetheless, the stated approaches are able

to pass through singular points of equilibrium

path.

2. Nonlinear Analysis of Structures

In incremental methods of nonlinear

analysis, loads are applied in several steps

and the stiffness matrix is modified at each

stage. In case there are only a few

increments, these methods are not accurate

at all. 

In the mentioned method, imbalanced loads

are calculated by considering the nonlinear

behavior of elements. Afterwards,

imbalanced loads are applied to the structure.

This process is continued until the
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imbalanced loads become very small.

Some methods such as Newton-Raphson

modify the stiffness of the structure at each

iteration. This procedure sometimes results in

numerical instability, and it can not pass

through the singular points.

The other techniques of nonlinear analysis

are structural variation theories presented by

Majid, et al for topological design of plane

trusses used instead of reanalysis. They also

used these theories for bending frames [6].

The researches showed that the analysis of a

structure can be done by considering the

results of another similar structure analysis.

The effects of variation or elimination of

members can also be studied easily. It is also

shown that a simple elastic analysis is

sufficient to present the complete behavior of

a frame up to collapse. Indeed, this method is

remarkable because of its ability in altering

the material properties of elements [10]. In

this type of analysis, a group of virtual loads

is used instead of altering material properties

or eliminating. In the mentioned method,

stiffness matrix is not modified directly, so it

is approximately similar to initial stiffness

method. 

Recently, a new method has presented for

elasto-plastic analysis of trusses in Tarbiat

Modarres University [9]. It is shown that

method is suitable for analyzing the

structures including compression-only and

tension-only members [7]. This technique is

similar to structural variation theories in the

application of stiffness variation effects;

nevertheless, the proposed method has high

accuracy. It can pass through the singular

points of equilibrium path easily using

mathematical programming. Additionally, in

comparison with the other mathematical

techniques, very few variables enter in the

proposed programming [9]. In the following

part, this method is reviewed and then

improved for solving the path dependent

problems in next parts. Also, the

complementary programming is utilized

instead of quadratic programming.

3. Elastic – Perfect Plastic Analysis by

Virtual Loads 

First, the method is explained for elements

with limited compression capacity, and then

it will be developed for the other cases.

Figure (1-a) shows a structure with truss

members including limited compression

capacity.
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b- Unit loadsa- Structure and external loads

d- Internal loads at initial elastic analysisc- Artificial compressive forces

Fig.1 A structure with limited compression capacity members
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It is supposed that the member i has limited

compression capacity equal to Ric. If an

ordinary analysis, under the applied loads, is

done, forces acting on both ends may be the

same as those in Fig (1-d). The element will

not be able to accept them if these forces

exceed the compression capacity of the

member. In this case, the value of stiffness of

the element should be modified by replacing

it with zero. Otherwise, the surplus stiffness

must be discarded. The surplus stiffness can

be removed by applying a pair of self-

equilibrium Xic forces shown in Fig (1.c). It is

equivalent to the stiffness modification of the

member i.

Calculating the virtual force Xic, one obtains

the internal force of the element, and there is

no need of an iterative process. 

It is assumed that Pi is the internal force of

the element i due to external loads. In

addition, qi is the internal force of that

element corresponding to unit loads

illustrated in Fig (1.b). When the virtual load

Xic and external loads act on the structure

simultaneously, the internal force of the

element i is achieved by the following

equation:

(1)

In order to eliminate the stiffness effect of

element i, the sum of the virtual force Xic and

P−i must be equal to the capacity limit of that

element. Hence, for the case of compressive

yielding this equation can be written:

(2)

Substituting in Eqn (1) results: 

(3)

The above equation shows that the sum of

forces applying to the ends of element i is

equal to compression capacity. The virtual

force Xic is a nodal load, and after applying it,

the structure will be in its actual equilibrium

condition. On the other hand, the modified

stiffness of a member is compensated by

some virtual loads. Using Eqn (3), the real

force of member i is obtained for

compression yield condition.

(4)

Wherein, PiR is the internal force value of the

member i. It should be noted that if the force

of the member i reaches its capacity limit, the

member is eliminated. In this case, the

stiffness effect of the element is removed by

applying Xic to its both ends. This means that

Eqn (4) is fulfilled. In contrast with that, if

the member i does not yield, there will be no

need to apply Xic to the ends of the element.

In this case, PiR will be greater than Ric.

(5)

Combining equations (4) and (5), the

following result is available:

(6)

It is essential to know that in Eqn (4), Xic has

a nonzero quantity when PiR is equal to the

capacity limit. In contrast, PiR in Eqn (5) is

the internal force of member  and is greater

than. In this case, there is no need to apply

Xic. Thus, Xic equals to zero. Therefore, the

following condition derived from the

problem nature is added to the governing

equation.

(7)

Substituting PiR in equation (4) leads to:

(8)

226 International Journal of Civil Engineerng. Vol. 5, No. 3, September 2007

i
c
iii pxqP += .

c
i

c
ii RXP =+

c
ii

c
ii

c
i RPXqX =++ .

c
ii

c
ii

c
i

R
i RPXqXP =++= .

c
ii

c
ii

c
i

R
i RPXqXP >++= .

c
ii

c
ii

c
i

R
i RPXqXP ≥++= .

0).( =− C
i

R
i

c
i RPX

0)..( =−++ c
ii

c
ii

c
i

c
i RPXqXX

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ce
.iu

st
.a

c.
ir

 o
n 

20
24

-0
7-

26
 ]

 

                             3 / 12

http://ijce.iust.ac.ir/article-1-326-en.html


These equations are used where the structure

has only one member with the compression

capacity limit. The equations can be

developed for the cases in which many

members with compression and tension

capacity limit contribute. The force-

displacement relationship of a truss member

with limited capacity is illustrated in Fig (2).

For structures with more than one limited

capacity member, the following equations are

obtained.

(9)

(10)

(11)

(12)

(13)

By solving the above programming problem,

unknown quantities of Xit and Xic are obtained

[9]. Here, Xit is a virtual force similar to Xic

that should be applied in the opposite

direction of Xic for removing surplus tension

stiffness. Using Eqn (9) and the values of Xit

and Xic, the real force of the member i is

calculated.

4.  Solving Problem by Mathematical

Programming

The aforementioned equations can be solved

by quadratic programming [7, 9]. In this case,

the left sides of equations (11) to (13) are

equal to zero. So, the sum of the equations

must also be equal to zero. Nonetheless, the

minimum value of this summation equals

zero. Beside the minimization of the

mentioned value, satisfying the conditions

(9) and (10) is necessary. Therefore, the

problem can be written as a quadratic

programming below.

(14)

Here, n is the number of truss elements with
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Fig.2 Force-displacement diagram of truss members including limited capacity
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limited capacity.

There are some techniques for solving the

quadratic problems. In these methods, a lot of

additional variables should be found.

Complementary programming is another

technique for solving above equations.

Because of linear constraints, design space is

convex. So, one can apply a linear

programming method such as simplex

technique and check the constraints (11) to

(13) in every steps. This method is nominated

complementary programming. The results of

complementary programming method are

more accurate while the method is also a

time-saving approach. The following

example shows the advantage of the

complimentary programming method to

quadratic programming technique.

Example 1

Consider the ten-member truss shown in Fig.

(3). All of the members have limited tension

and compression capacity, as they are path

independent elements. This example has

been solved in deformation theory [5]. In the

presented method, the quadratic

programming result is obtained with 28

iterations, while the complementary

programming converges with three

iterations. Member properties are shown in

Table (1). The results are given in Table (2).

5. Truss Elements with Hardening

Fig (4) shows the behavior of a tension

member  possessing hardening behavior.

Internal force of the aforementioned member

due to external and unit loads is obtained

from equation (15).

(15)

The real force of member can be obtained

from equation (16).

(16)

The after yielding tension capacity of the

member, R--it , is calculated as follows.

(17)

Here, ki and Kit are the axial initial stiffness

of member i and the after yielding stiffness,

respectively. In addition, Rit is the force

related to stiffness alteration point of

member i. Substituting equation (17) in (16)

and simplifying the result, these expressions

are obtained:
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Fig.3 Ten bar truss
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Bar
E  
(KN/Cm2)

Section 
area (cm2) 

Axial force at yielding

Tension 
(KN) 

Compression 
(KN)

1 2.06 × 104 10.0 235.368 -235.368

2 2.06 × 104 5.0 117.684 -117.684

3 2.06 × 104 2.0 47.074 -34.325

4 2.06 × 104 10.0 47.074 -34.325

5 2.06 × 104 5.0 235.368 -235.368

6 2.06 × 104 1.5 117.684 -117.684

7 2.06 × 104 1.5 35.305 -23.537

8 2.06 × 104 1.5 35.305 -23.537

9 2.06 × 104 1.0 23.537 -11.768

10 2.06 × 104 1.0 23.537 -11.768

Table 1 Member properties

Bar 1 2 3 4 5 6 7 8 9 10

Axial force 39.377   8.276    2.325     8.276     -42.834    -14.388    28.525    -23.636        20.348    -11.704

Table 2 Results of ten bar analysis

Fig.4 Force -displacement of truss element with strain hardening
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(18)

(19)

The behavior constraint is written below.

(20)

Equations (18) and (20) are obtained, as the

structure has only one member with the

stated properties. Analogous equations can

be developed for the general case wherein

there are many truss members with strain

hardening properties. Suppose that member i
in compression part is similar to tension part

and has yielding point Ric. In addition, the

stiffness is altered to kic after compressive

yielding. Thus, the following programming

form is used for the problem’s solution.

(21)

(22)

(23)

(24)

(25)

In which, fit and fic are slack and surplus

variables respectively [9]. All of the above

equations are useable for path independent

problems. These types of problems are called

holonomic elasto-plastic problems. If loading

is path dependent, the load can be applied to

the structure incrementally, and the stiffness

modification is used in every step. It should

be noticed that, the magnitude of steps of the

present method could be greater than that of

the other incremental techniques. On the

other hand, applying the peaks of the loading

diagram to the structure will give excellent

approximation.

The loading variation of a single degree of

freedom is similar to Fig (5.a). Three points

of 1, 2, and 3 on the force-displacement

diagram of Fig (5.b) correspond to points A,

B, and C, respectively. After applying the

first increment, (∆P0), and finding the results
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Fig.5 Incremental behavior of elasto-plastic truss member
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by the mathematical programming, forces

and displacements of point 1 are obtained

.The results are saved and the problem can be

supposed as a new problem now. After that,

∆P1 is applied to the structure. In this case,

force-displacement diagram is changed to a

new form shown in Fig. (5.c). This procedure

is applicable at every step.

Analyzing the structure with the load ∆P1,

one can achieve the increment of stresses and

displacements of this step. It is clear that the

total forces and displacements will be

computed by the summation of increments

and the application of Fig. (5). This sequence

is repeated until the last step, and the results

of the analysis are obtained. Considering k as

the number of load increments, equations

(26) to (30) can be rewritten below:

(26)

(27)

(28)

(29)

(30)

Finally, the real forces and displacements are

computed in these forms.

(31)

(32)

A computer program is written for elasto-

plastic analysis of structures. Two examples

are solved by that program, and their results

are presented.

Example 2

A four-member truss is shown in Fig (6). The

cross section areas of the members are 1cm2,

and F1 is applied to the structure before F2.

After analyzing, the internal force vector will

be {250, -3750, 250, 4250}T. Furthermore,

the displacement vector of the central node

equals to {.05, -. 65}T.

The results obtained by this method and

Newton-Raphson approach are alike.

Example 3

Fig.(7) shows a navigation tower and its

properties of members. External loads of

Table (3) are applied to the structure. This

example is also solved in reference [8].

There, the properties of a plastic member are

modified at every step. This way is called

“Celernomic analysis”. The result is
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Fig.6 Four bar truss and material behavior
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6

6

0

101

1030

36000

×=
×=′=

=

TE

EE

σ

Element 1,2 1,3 2,4 3,5 4,6 5,7 6,8 7,9 8,10 9,11 10,12

Area 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.44 1.44 1.44

Element 11,13 12,14 13,15 2,3 4,5 6,7 8,9 10,11 12,13 Others

Area 1.44 1.44 1.44 1.21 1.21 1.21 1.21 1.21 1.21 0.484

Fig.7  Navigation tower
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Node 
No.

Vertical 
Load

Lateral 
Load

Node No.
Vertical 
Load

Lateral 
Load

1 -308 -9650 8 -304 -87.5

2 -273 -50 9 -304 -438

3 -273 -250 10 -374 -100

4 -292 -62.5 11 -374 -500

5 -292 -312 12 -398 -112

6 -294 -75 13 -378 -563

7 -294 -275

Table-3 Navigation tower external loading

Rod 
Applied Load Unloading Residual 

Celernomic 
Meth. 

Proposed 
Meth. 

Celernomic 
Meth. 

Proposed 
Meth. 

Celernomic 
Meth. 

Proposed 
Meth. 

1,2 - 39100 -39056 -39100 -39056 0 0 

1,3 38700 38745 38700 38745 0 0 

2,4 -39100 -39149 -39400 -39433 300 284 

3,5 39000 39053 38800 38770 200 283 

4,6 -39600 -39711 -40200 -40199 600 288 

5,7 39400 39471 39000 38984 400 487 

6,8 -40400 -40419 -41100 -41099 700 680 

7,9 40000 39970 39300 39292 700 678 

8,10 -42300 -42178 -42200 -42139 -100 -39 

9,11 39700 39612 39800 39654 -100 -42 

10,12 -43500 -43350 -43500 -433354 0 4 

11,13 40300 40110 40300 10108 0 2 

12,14 -44900 -44698 -44900 -44699 0 1 

13,15 40900 40672 40900 40674 0 -2 

2,3 150 151 0 -60 150 211 

4,5 628 629 0 4 628 625 

6,7 1250 1301 0 96 1250 1205 

8,9 641 643 0 29 642 614 

10,11 0 -46 0 -1 0 -45 

12,13 0 -4 0 -8 0 4 

2,5 -211 -212 120 120 -331 -332 

3,4 -683 -682 -351 -351 -332 -331 

4,7 -415 -417 224 227 -639 -644 

5,6 -1180 -1179 539 -535 -641 -644 

6,9 -656 -720 351 295 -1007 -1015 

7,8 -1717 -1659 -709 -665 -1008 -1014 

8,11 623 577 554 509 69 68 

9,10 -772 -726 -840 -795 68 69 

10,13 727 690 733 696 -6 -6 

11,12 -1045 -1008 -1040 -1003 -5 -5 

12,15 945 915 945 915 0 0 

13,14 -1251 -1221 -1250 -1221 -1 0 

Table 4 Navigation tower internal loading
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presented in Table (4). The required steps and

iterations for different methods are compared

in Table (5).

6. Conclusion

In the present study, a new method was

presented for elasto-plastic analysis of

trusses. Comparing the method with other

ones shows that:

- The proposed method is useful for the

elasto-plastic analysis of the structures

including truss members. 

- In the proposed method, the external load

vector is modified instead of stiffness matrix.

This vector is achieved by mathematical

programming and applied to structure in one

step, so, the iterative structural analysis is

eliminated.

- Changing the elasto-plastic analysis to a

linear programming problem guarantees the

convergence.

- The results of a linear programming

problem are exact, so the results of the

proposed method are exact too.

- The usage of complementary programming

instead of quadratic programming reduces

the number of variables and improves

rapidity remarkably.

- The required variables are fewer than those

required for other mathematical methods. So

the required memory is less, and rapidity is

better than other mathematical ones.

- The proposed method can be used for path

dependent and independent problems.

- This technique can also be developed for

other nonlinear problems. 
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