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1. Introduction

In comparison to steel structures, the optimization of
reinforced concrete structures is more complicated; because
RC structures can be designed with a semi-infinite set of
member sizes and various patterns of reinforcements. Also, in
the optimization of steel structures, only one material is
considered and the cost is directly proportional to the weight
of the structure. However in the case of RC structures, because
of having multi-material, the three different cost items
consisting of concrete, steel and formwork to be considered,
and each of these parameters influence the total cost of the
structure. Therefore, the optimization problem converts into
the selection of an appropriate combination of sections
dimensions and the quantity of reinforcement so that the
overall cost of structure is minimum.

In the last three decades, many researchers have studied the
cost optimization of reinforced concrete structural elements
and frames. Adamu et al. [1] used the continuum-type
optimality criteria for minimizing the cost design of
reinforced concrete beams. An optimality criteria procedure

has been used to attain the optimal design of reinforced
concrete frames based on the ACI code by Moharrami and
Grierson [2]. Zielinski et al. [3] employed an internal penalty
function algorithm to cost optimum design of reinforced
concrete short-tied rectangular columns based on the
Canadian Standard specifications. The cost optimum design of
three-dimensional skeletal structures using the optimality
criteria is performed by Fadaee and Grierson [4]. Balling and
Yao [5] optimized three-dimensional RC frames using
sequential quadratic programming and gradient based method.
A review of research work associated with cost optimization
of concrete structures was discussed by Sarma and Adeli [6].
Rajeev and Krishnamoorthy [7] applied a simple genetic
algorithm (SGA) to obtain optimal design of planar RC
frames. Optimization of T-shaped reinforce concrete sections
under bending was performed by Ferreira et al. [8]. Optimum
design of two dimensional frames using genetic algorithm was
carried out by Lee and Ahn [9] and Camp et al. [10] via
constructing a database of sections for beams and columns.
Govindaraj and Ramasmy [11,12] have investigated the
optimum design of continuous beams, and two and three
dimensional RC frames using the genetic algorithm. Cost
optimization of buildings with planar slabs is carried out by
Sahab et al. [13,14] using a hybrid genetic algorithm. The cost
of the rectangular beams and columns of RC buildings was
minimized by Choi and Kwak [15] via direct search method.
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Kwak and Kim [16] used a direct search method and Kwak
and Kim [17] employed an integrated genetic algorithm
complemented with a direct search for optimal design of
planar RC frames.

In relation with BB-BC and HPSACO, the following
developments can be mentioned:

Erol and Eksin [18] introduced the BB-BC as a new meta-
heuristic approach. Camp [19], and Kaveh and Talatahari [20]
employed BB-BC for optimal design of trusses, and Kaveh
and Talatahari [21] performed the optimal design of Schwedler
and ribbed domes via a hybrid BB-BC algorithm.

Shelokar et al. [22] proposed the PSACO (a hybrid particle
swarm optimizer and ant colony approach) for the solution of
continuous unconstrained problems. Recently, Kaveh and
Talatahari [23-26] have presented an optimization algorithm,
so-called heuristic particle swarm ant colony optimization
(HPSACO), for steel truss and frames problems. In HPSACO,
to reach to an efficient algorithm, the PSOPC algorithm (a
hybrid PSO with passive congregation) is combined with the
ant colony algorithm and harmony search approach. The
HPSACO applies the PSOPC for global optimization and an
ant colony approach is employed as a local search, wherein
ants apply a pheromone-guided mechanism to update the
positions found by the particles in the earlier stage. Harmony
search (HS) works as a handling approach to deal with
variable boundaries [26]. In this paper the equation of standard
deviation in ACO stage is different with that of Ref. [24]. For
extra study about PSO-based, ACO and HS algorithms, the
interested reader can refer to Refs. [27-39]. 

This paper presents the application of two algorithms:
heuristic big bang-big crunch (HBB-BC) and a heuristic
particle swarm-ant colony optimization (HPS-ACO) to
discrete optimization of reinforced concrete planar frames
subject to combinations of gravity and lateral loads based on
ACI 318-08 code. The remaining sections of this paper are
organized as follows. The method to generate the databases for
beam and column sections is described in section 2. Section 3
is related to frame analysis and slenderness calculations.
Optimization formulation is given in section 4. Section 5
contains explanations of some meta-heuristic algorithms.
Some RC frame design examples are studied in section 6. The
paper is concluded in section 7.

2. Creating the sections database

In reinforced concrete frames a large number of sections and

different patterns of reinforcements can be used for beams
and columns. For reducing the complexity of the optimization
of RC Frames, here two databases of sections for beams and
columns are created. In construction of these databases, some
practical limitation are imposed and some standard rules are
followed. In practice, usually the sections are considered as
rectangular ones with a depth to width ratio between 1.5 to 2.5
for beams and 1 to 2 for columns. The increment of the
dimensions of the sections can be considered with steps of
5cm. The sizes of reinforcing bars which are usually used in
RC structures are D19, D22, and D25. The ACI 318-08 code
[40] considers some limitations on the sections. These
limitations consist of the minimum and maximum of steel
area in the cross sections, minimum thickness of the concrete
cover equal to 40mm for RC members, minimum diameter of
the ties and minimum distance between longitudinal
reinforcement bars. Taking the above mentioned rules into
account, many sections for beams and columns can be
generated.

2.1. Beams 

Considering the ACI 318-08 code, the following constraints
should be imposed on the sections of the beams:

(i) At least 4 bars should be considered in four corners of the
cross section, as shown in Fig. 1a.

(ii) The minimum distance between the longitudinal
reinforcing bars is taken as Sb=40mm.

(iii) The minimum concrete cover is considered as tc =40mm.
(iv) The diameter of the ties is assumed as D10.
(v) The layout of the bars is limited to at most two layers.
(vi) The reinforcing bars of the top layer should be positioned

on the reinforcing bars of the bottom layer, and the minimum
distance between two layers should be 25mm as shown in Fig.
1b.

(vii) In a beam section, if additional reinforcing bars are
needed, all such bars will be positioned in a second layer in a
symmetric form with respect to the vertical axis of the section,
and placed directly above the reinforcing bars in the lower
layer. When the aforementioned symmetry does not exist, then
it is made symmetric by considering an additional bar as
illustrated in Fig. 1c.

In chapter 10 of ACI 318-08 code [40] in relation with the
minimum and maximum areas of flexural reinforcement bars,
the following rules are imposed:
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Fig. 1. Limitations on the layout of the reinforcement bars for beam members
(a) At least four bars in the corners  (b) Minimum distance between the longitudinal bars in the two layers  (c) Symmetric layout of the

reinforcement bars with respect to the vertical axis of the section
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(1a)

(1b)

Where b, fBc and fy are the width of the cross section,
specified compressive strength of the concrete, and specified
yield strength of the reinforcing bars, respectively. Here d is
the effective depth of the section which is measured as the
distance from extreme compression fiber to centroid of the
longitudinal tensile reinforcing bars of the section. The
coefficient β1 is a factor relating the depth of the equivalent
rectangular compressive stress block to the neutral axis depth:
it is taken from section 10.2.7.3 of the ACI 318-08 code. The
rebars of D19 and D22 are used for positive and negative
moments in beams, respectively.

Considering the above rules, 18 types of sections are
constructed as follows:

300×450, 300×500, 300×550, 300×600, 350×550, 350×600,
350×650, 350×700, 400×600, 400×650, 400×700, 400×750,
400×800, 450×700,450×750, 450×800, 450×850, 450×900 mm.

A total of 1014 sections with different layouts for the
reinforcing bars are generated for beams, the details of which
are provided in Table 1. Details of the formation of these
sections can be found in Ref. [9].

For the beams, the factored moment capacities at the middle, 

and near the ends are calculated using 

(2)

and stored in the database. In this relation, φ is the strength
reduction factor (φ=0.9), As is the area of the tensile bars and
a is the depth of the equivalent rectangular compressive stress
block defined as 

a=As.fy/(0.85fBc b)                                                               (3)

Table 1 shows the database of the beam sections used for all
the test problems of this paper. The table contains
information on width, depth, area and moment of inertia,
number of reinforcing bars for positive and negative
moments, the corresponding factored bending moment
capacities, and the cost per unit length of the beams. The
calculation of the cost for the unit length will further be
discussed.

2.2. Columns

Using the rules from ACI- 318-08 code, the following
constraints should be applied on the sections of the
columns:

(i) The minimum free distance between the parallel
longitudinal bars is assumed to be sc=40mm.

(ii) The minimum number of bars is 4 which should be
positioned at the four corners of the cross section as shown in
Fig. 2a.

(iii) The minimum thickness of the concrete cover is
considered as tc =40mm.

(iv) The diameter of the ties is assumed as D10.
(v)  The pattern of the bars should be symmetric and in the

two opposite sides of the section, as illustrated in
Fig. 2b.

(vi) The minimum and maximum areas of the longitudinal
bars are limited to 1 and 8 percent of the gross area of the cross
section, respectively.

In column sections only D25 bar are used. In all the
examples, for the columns a database consisting of 55 square
cross sections with the dimensions 300mm to 900mm at steps
of 50mm is used, as provided in Table 2.

The strength of a column under the applied loads (bending
and axial force) is evaluated using the P-M interaction
diagram. Here a simplified linear P-M interaction diagram is
used, as illustrated in Fig. 3. 

Table 2 demonstrates the database of the column sections
used in the all test problems of this paper, including
dimensions, number of reinforcing bars and the key points of
the interaction diagram, and also the cost of the unit length of
the columns. The procedure followed to compute cost will be
clarified later in the paper.
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Fig. 2. Limitations of the reinforcement of the column sections
(a) At least 4 longitudinal bars at four corners of the section (b)
Symmetric pattern of the bars and the distance and cover of the

reinforcing bars

Cost per unit
length ($)

Factored moment resistance (kN.m)Number of bars
Moment of inertia

(×106mm4)
Area

(×102mm2)
Depth
(mm)

Width
(mm)

Beam
number EndCenterEnd

(D22)
Center
(D19)

133.9597.6774.41222278.113504503001
135.9697.67108.84232278.113504503002
......................................................................................................
301.781152.3761.312102733840509004501013
305.791152.3893.4312122733840509004501014

Table 1. Database for the beams considered in all the examples
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3. Frame analysis

For optimal design of a frame the fitness of each design
should be computed. For this purpose the internal forces
including axial force, shear force and bending moments in
each element of the frame are required. These structural
response quantities are computed for each frame design via
finite element analysis. In order to simplify the calculations,
in the present study, only bending moments are considered
for the beams while for columns both bending moments and
axial forces are considered. The analysis of frame also
consists of controlling the slenderness of the columns, and
in case a section is recognized to be slender, then the
moment magnification is made considered for that
column.

3.1. Slenderness

When a column is regarded slender, the moment is
magnified. ACI 318-08 code [40] states that for compression
members, not braced against sidesway, the slenderness effects
can be neglected when 

(4)

In this relation k is the effective length factor for compression
members; lu is the unbraced length of compression member; r
is the radius of gyration of the cross section of a compression
member.

The effective length factor of a column depends on the ratio

of the stiffness of the columns to the stiffness of beams
connected at the end of the compression member. This
ratio at the end of a compression member can be expressed
as 

(5)

Where I is the moment of inertia considering the cracked
section, E is the modulus of elasticity and l is the length of the
beams or columns. Indices b and c respectively refer to beams
and columns connected to the ends of a column.

After calculating ψ for two ends of each compressive
member, the mean value of these values, ψm , is obtained
and the coefficient of the effective length of the
compression member, k, is calculated using the following
relationships:

(6a)

(6b)

For a slender column, the magnified bending moment can be
calculated as

(7)

Where Mns is the bending moment generated by the gravity
loads and Ms is due to lateral load and δs is the moment
magnification factor for frames not braced against sidesway.
After determining the magnified moment separately for each
end of a column, the biggest one is used to design the column.
The calculation of the magnification factor δs is performed as
indicated in Chapter 10 of the ACI 318-08 code.

4. Formulation of optimization

4.1. Objective function

The purpose of the optimal design of a RC frame is to
minimize the total cost of the frame. Thus, the
objective function is the total cost of all beams and columns
due to individual cost components of concrete, steel and
formwork. The cost of the material, fabrication and labor
should be included in the cost of any component. Hence, the
objective function of a RC frame can mathematically be
stated as:

Minimize:   F= Fb+Fc (8)

ssns MMM .δ+=

2≥mψ : mk ψ+= 19.0
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Cost per unit
length ($)

M4
(kN.m)

M3
(kN.m)

M2
(kN.m)

P5
(kN)

P3
(kN)

P1
(kN)

P0
(kN)

Number of
bars (D25)

Depth
(mm)

Width
(mm)

Column
number

133.7270.5281.9822.19692.74291314.71643.343003001
140.66100.61101.8225.971039.1405.71504.61880.763003002
……………………………………………………………………
492.551504.52230.7717.1738104961.310503131282290090054
499.481638.12326.2739.314156.34954.910693133662490090055

Table 2. Database of considered columns for all the examples

Fig. 3. Limitations of the reinforcement of the column sections
(a) At least 4 longitudinal bars at four corners of the section 
(b) Symmetric pattern of the bars and the distance and cover 

of the reinforcing bars
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(9a)

(9b)

Subject to:

(10a)

(10b)
Where,
F = Total cost of all members of the frame ($);
Fb, Fc = Cost of all beams and columns, respectively ($);
Cc, Cf, Cs= Unit cost of concrete, formwork and steel,

respectively;
b, h, L =  Width, depth and length of the members (m);
Ast = Area of the reinforcing bars for each section (m2);
γs = Density of rebar (kg/m3);
M+

u, M-
u  l , M-

u   r = Externally applied moment at mid-span, left
and right joints of beams, respectively;

M+
n , M-

n = Nominal flexural strength at mid-span and joints
of beams,   respectively;

Mu, pu = Externally applied moment and axial force of
columns, respectively;

Mn, pn = Nominal flexural and axial strength of columns,
respectively;

In this study, the unit costs of the concrete, steel, formwork
and the density of rebar are estimated as:

Cc=105 $/m3, Cs=0.9 $/kg, Cf=92 $/m2, γs=7850 kg/m3 (11)

As mentioned before, the cost of the unit length of
the beam and column sections, Fb and Fc, are calculated
and stored in the last column of the corresponding database
table. 

4.2. Penalized objective function

In order to assess the fitness of a trial design and determine
its distance from the global optimum, the eventual constraint
violation should be computed by means of a penalty function.
The penalty function consists of a series of geometric
constraints corresponding to the dimensions and shape of the
cross sections, and a series of constraint related to the
deflection and internal forces of the members of the structure.
Thus, penalty will be proportional to constraint violations, and
the best design will have the minimum cost and no penalty.
Geometric constraints are taken into account in the definition
of the database of available beam and column profiles.

For the application of an optimization algorithm, the above
constrained optimization problem should be transformed into an
unconstrained one. For this purpose each internal force is
normalized with respect to the corresponding member strength.

For beams, three constraints are considered corresponding to the
positive bending moments at the middle, and the negative
bending moments at the two ends of the member:

(12a)

(12b)

(12c)

A column section is suitable and safe enough when the
corresponding pair (Mu,Pu) under the applied loads does not
fall outside the interaction diagram. In order to express this
constraint in a mathematical form, the distance between the
point representing the pair and the origin in the plane of
interaction diagram is used, Fig. 3. Considering this figure, if
the position of the pair is considered at B, and A is the
crossing point of the line connecting B to the origin O and the
interaction diagram, then the distance of the points A and B
from O can easily be calculated. The ratio of these distances
can be used as the constraint of the columns resistance. In
order to specify the point A, the angle between line OB and  

the horizontal axis should be calculated as and
then considering the key points of the interaction diagram,
it can be found out which line of the interaction diagram     will
be crossed by the line OB. In this way, if Lm and Lu are taken
as the lengths of OA and OB, respectively, then we have

(13)

Therefore the penalty function for the strength of the column
can be expressed as:

(14)

For columns, in addition to the strength requirements, another
three constraints corresponding to the dimension and the
number of reinforcing bars of the columns section which is
located in the same line (the co-linear columns) are
considered. This means that the dimensions of the top column
should not be larger than those of the bottom one, and also the
number of reinforcing bars in the top column should not be
greater than that of the bottom column. If T and B represent the
top column and bottom column, respectively, then these
constraints can be expressed as follows:

(15)
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Where n is the number of the reinforcing bars of the column
sections, respectively. The total penalty of each design is
determined by summing over different penalty terms for each
element:

(16)

The constrained optimization problem was transformed into
an unconstrained optimization problem by collapsing the cost
function and the penalty term according to literature:

Minimize Fp=F.(1+G)
ε

(17)

Where Fp is the penalized objective function, F is the cost
function and ε is a parameter larger than 1 that depends on
the structure type. The value ε =2 set in this study provided
satisfactory results. After calculating the value of Fp for
all the candidates, the optimization process is continued
to obtain the optimal design using the following
algorithms. 

5. Meta-heuristic algorithms

5.1. Heuristic big bang-big crunch (HBB-BC) algorithm

The BB-BC algorithm as developed by Erol and Eksin [18]
consists of two phases: a Big Bang phase, and a Big Crunch
phase. In the Big Bang phase, candidate solutions are
randomly distributed over the search space. Each candidate
design is a possible design for the structure. The quality of
each candidate design is evaluated by computing the penalty
function. The first phase of the BB-BC algorithm ends when
this evaluation is performed for all designs. In the Big Crunch
phase, the centre of mass is defined for the population of
candidate designs. In order to find the position of this centre,
the mass of each candidate is considered to be proportional to
the inverse of the corresponding penalized objective function.
Therefore, the merit function is smaller for each candidate
with small cost and low penalty, and such a candidate absorbs
the mass centre towards itself. Thus, the centre of mass is
located near the more qualified candidate designs. At this
point, the BC stage is completed. In the new BB phase, a new
population around the obtained centre of mass, produced in the
previous BC stage, is formed. The BB and BC stages are
sequentially repeated until the optimal design is obtained. In
each iteration of the BB and BC, the search space shrinks
until reaching the convergence to the optimum design. The
BB-BC code utilized in this study is based on the classical
formulation developed by Ref. [18]. The centre of mass is
defined as:

(18)

Where Xcm is the position of the center of mass; Xi is the
position of individual i; Fpi is the penalized objective
function value of the individual i; and N is the population

size.
The new position of the new population in the next iteration

of Big Bang is obtained by a normal distribution around the
centre of mass Xcm by the following relationship:

(19)

Where Xi
new is the position of the new individual i; σ is the

standard deviation of a standard normal distribution and
defined as:

(20)

Where r is the random number from a standard normal
distribution; α is the parameter not greater than 1 which limits
the size of the search space around Xcm; xmax and xmin are the
upper and lower limits on the values of the design variables; s
is the number of explosions.

In order to improve the performance of the BB-BC, Camp
[19] presented the following formula for producing the new
candidate:

(21)

Where Xbest is the best global solution of all the candidates
obtained up to this stage of the iteration of BB-BC. The
parameter β controls the effectiveness of the Xbest in selecting
the position of the new candidates. 

Here, the variable X is considered as cost per unit length of
each element and if the members of a structure are put in
different groups, for each group, a centre of mass should be
defined. The components of new vectors (candidate solutions),
which fell outside the variables boundary, have to be
regenerated in an alternative manner. Unlike the other papers
which have used the BB-BC for optimization, here a new
method is employed to handle these candidates. It is derived
from harmony search (HS) algorithm [37]. The HS algorithm
consists of some optimization operators, which will be
discussed further. In the HBB-BC, only the harmony memory
(HM) concept has been used. The best solutions obtained from
each iteration of the BB-BC, is stored in a matrix as harmony
memory. Thus, each component of the new candidates that
violates its corresponding variables boundary, should be
selected from HM in a random manner. Applying such a
technique to the BB-BC can improve its performance and
increase the convergence rate.

As it can be seen from Tables 1 and 2, the beam and column
sections are ordered according to the cost of the unit length from
smallest to the biggest. Thus for the group of beams we have
xmin=133.95$ and xmax=305.79 $, and for the group of columns
we have xmin=133.72 $ and xmax=499.48 $. The magnitudes of
xi

new for different groups of beams and columns can be attained.
For each group of beams or columns, the member in the
database of available structural elements with the cost per unit
length closest to the computed one is selected as the new
candidate design. The sorting of the available elements with
respect to their cost per unit length, has facilitated the updating
of design. The flowchart of the optimization by HBB-BC
algorithm is shown schematically in Fig. 4.
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5.2. Particle swarm optimization

The particle swarm optimization (PSO) was introduced by
Eberhart and Kennedy [27], which was inspired by the social
behavior of animals such as fish schooling and bird flocking.
The standard PSO algorithm starts with a population (swarm)
of random possible solutions of the optimization problem
(particles). Each particle flies through the search space and its
position is updated by the best position which is previously
attained by the particle itself up to this iteration (local best) and
by the best position among all adjacent particles (global best).
This behavior mimics the cultural adaptation of a biological
agent in a swarm: it evaluates its own position based on certain
fitness criteria, compares to others, and imitates the best in the
entire swarm [28].

In every iteration, the position of each particle is updated as
follows: 

(22)

(23)

Where, Xi
k and Vi

k are the current position and velocity of the
ith particle, respectively; Pi

k  and Pg
k represent the local best

and global best, respectively; ω is an inertia weight to control
the influence of the current velocity, r1 and r2 are two random
numbers uniformly distributed in the range of (0,1) and c1 and

c2 are two acceleration constants [29]. To improve the
performance of standard PSO (SPSO), He et al. [30]
introduced the passive congregation as an important biological
force preserving swarm integrity. In PSOPC, the velocity is
expressed as:

(24)

Where Ri is a particle selected randomly from the swarm, c3

is the passive congregation coefficient and r3 is a
uniform random sequence in the range (0, 1). Several
benchmark functions have been tested in Ref. [30]. The
results indicate that PSOPC has a better performance than
SPSO.

5.3. Ant colony optimization

Ant colony optimization (ACO) was first suggested by
Dorigo [32] as a multi-agent approach that simulates the ant
foraging behavior to solve difficult combinatorial
optimization problems, such as, the traveling salesman
problem and the quadratic assignment problem. Ants are
social insects whose behavior is directed more to the survival
of the colony as a whole than to that of a single individual
component of the colony. An important behavior of ant
colonies is their foraging behavior, and in particular, how
ants can find shortest paths between food sources and their
nest. While walking from food sources to the nest and vice
versa, ants deposit on the ground a substance called
pheromone, forming in this way a pheromone trail. Ants can
smell pheromone and when choosing their way, they tend to
choose, in probability, paths marked by strong pheromone
concentrations. The pheromone trail allows the ants to find
their way back to the food source (or to the nest). Also, it can
be used by other ants to find the location of the food sources
found by their nest-mates. When more paths are available
from the nest to a food source, a colony of ants will be able
to exploit the pheromone trails left by the individual ants to
discover the shortest path from the nest to the food source
and back [33]. Further, the HPSACO uses the ACO
capacities corresponding to local search and does not employ
its formulation.  

5.4. Harmony search algorithm 

Harmony search (HS) algorithm is based on natural musical
performance processes that occur when a musician searches
for a better state of harmony, such as during jazz
improvisation [37]. The engineers seek for a global solution
as determined by an objective function, just like the
musicians seek to find musically pleasing harmony as
determined by an aesthetic [38]. The HS algorithm consists
of some optimization operators, such as the harmony
memory (HM), the harmony memory size (HMS), the
harmony memory considering rate (HMCR), and the pitch
adjusting rate (PAR). The components of new vectors
(particles), which fell outside of the variables boundary, have
to be regenerated in an alternative manner. For this purpose,
HPSACO uses the harmony search algorithm. In this paper,

1
1 1 2 2 3 3( ) ( ) ( )k k k k k k k k

i i i i g i i ic r c r c rω+ = + − + − + −V V P X P X R X

1 1k k k
i i i
+ += +X X V

1
1 1 2 2( ) ( )k k k k k k

i i i i g ic r c rω+ = + − + −V V P X P X
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Fig. 4. Flowchart of the optimization by HBB-BC algorithm
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only the harmony memory (HM) concept is used in the
HPSACO and HBB-BC algorithms. The other operators have
not been employed. Similar to the harmony memory in the
HS algorithm, the PSOPC stores the feasible and "good"
vectors (particles) in the local best matrix, i.e. Pi

k . Hence,
each component of the new vector (particle) violating the
variables' boundaries can be generated randomly again by
such a technique-selecting for the components of different
vectors in the local best swarm [31].

5.5. Heuristic particle swarm ant colony optimization (HPSACO)

Shelokar et al. [22] proposed the PSACO (particle swarm ant
colony optimization) based on the common characteristics of
both PSO and ACO algorithms. Like, survival as a swarm
(colony) by coexistence and cooperation, individual
contribution to food searching by a particle (an ant) by sharing
information locally and globally in the swarm (colony)
between particles (ants), etc. The implementation of the
PSACO algorithm consists of two stages. In the first stage, it
applies PSO, while ACO is implemented in the second stage.
The ACO works as a local search, wherein, ants apply
pheromone-guided mechanism to refine the positions found by
particles in the PSO stage. In PSACO, a simple pheromone-
guided mechanism of ACO is proposed to apply as local
search. The proposed ACO algorithm handles P ants equal to
the number of particles in the PSO [22].

Kaveh and Talatahari [23-26] have presented an
optimization algorithm, so-called heuristic particle swarm
ant colony optimization (HPSACO). They improved the
performance of the PSACO, by adding harmony search
scheme to PSACO as a handling approach to deal with
variable boundaries. HPSACO has been used for discrete
and continuous optimization of truss and steel frames
problems.

In ACO stage, each ant generates a solution around Pg
k which

can be expressed as:

(25)

Based on the HPSACO, in Eq. (25), the N(Pg
k.σ) indicates a

random number normally distributed with mean Pg
k and

variance σ, where 

(26)

Here, η is used to control the step size. The normal
distribution with mean Pg

k can be considered as a continous
pheromone which has the maximum in Pg

k and decreases with
going away from it. In ACO algorithms, the probability of
selecting a path with more pheromone is greater than other
paths. Similarly, in the normal distribution, the probability of
selecting a solution in the neighborhood of Pg

k is greater than
the others. This principle is used in the HPSACO as a helping
factor to guide the exploration and to increase the controlling
in exploitation [24]. In this paper, by using the capacity of the
BB-BC with regard to generation of new solution, we
improved the performance of the HPSACO. Thus we used the
standard deviation of a standard normal distribution, i.e. σ,

under consideration in Eq. (20), instead of that in Eq. (26).
Therefore, in ACO stage each ant generates a solution around
Pg

k as follows: 

(27)

Where r is the random number from a standard normal
distribution; α is the parameter limiting the size of the search
space; xmax and xmin are the upper and lower limits on the
values of the design variables; s is the number of ACO
iterations. 

In the present method, penalized objective function value
Fp(Zi

k) is computed and the current position of ant i, Zi
k , is

replaced with the current position of particle i in the swarm,
Xi

k; if Fp(Xi
k)>Fp(Zi

k) . The pseudo-code for the HPSACO
algorithm is listed in Table 3.

6. RC frame design examples

In order to demonstrate the efficiency of the algorithms
described in this paper, three examples of RC plane frames are
considered. These optimization examples consist of

• A three bay, four-story RC frame
• A three bay, eight-story RC frame
• A three bay, twelve-story RC frame
Loading cases acting on frames consist of joint loads and

uniform distributed loads. Lateral equivalent static earthquake
loads (E) are applied as joint loads, and uniform gravity loads
are assumed for a dead load (D) and a live load (L). Five
loading cases are considered as suggested in ACI 318-08 code
[40] for strength design:

U=1.2D+1.6L (28a)
U=1.2D+1.0L ± 1.4E                                                      (28b)
U=0.9D±1.4E                                                                  (28c)

A uniform service dead load of D=22.3 kN/m, and a uniform
service live load of L=10.7 kN/m were assumed in all the
examples. The assumed specified compressive strength of
concrete and yield strength of reinforcement bars in these
examples were set to fcB =23.5 and fy =392MPa , respectively. 

For the HBB-BC algorithm, our examinations showed that
β=0.3 and α=0.7 are more suitable values. With these
parameters, the optimal results and the speed of convergence
were much higher. For the HPSACO algorithm, in all
examples, the value of constants c1 and c2  are set 0.8 and the
passive congregation coefficient c3 is taken as 0.6. The value
of inertia weight ω(k) decreases linearly from 0.75 in first
iteration to 0.4. In the first example, the value of α existing in
Eq. (27) is considered as 0.2 and 0.15 for beam groups and
column groups, respectively, and in the other examples these
are assumed as 0.3 and 0.2. 

All optimization runs are carried out on a standard
PC with a Pentium (R) Dual-Core CPU 2.60 GHz
processor and 2.00 GB of RAM memory. The algorithms
are coded in Matlab. Structures are analyzed via direct
stiffness method. A typical stopping criterion of identical
best solution for 20 last iterations is used for all examples
in both algorithms. 

max min( )k k
i g

r x x
s

α −
= +Z P

ησ ×−= )( minmax xx

( , )k k
i gN σ=Z P
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6.1. A three bay, four-story reinforced concrete frame

The geometry, loading and grouping details are shown in
Fig. 5. The frame has a total of 28 members, 12 beams and 16
columns. All elements are arranged into four groups; two

groups for beams and two groups for columns. This frame is
subjected to gravity and lateral loads. A population size of 125
is used for both algorithms. An optimum cost of 22207 $ is
obtained by the HBB-BC and HPSACO after 74 and 35
iterations, respectively. Table 4 compares the results obtained

201International Journal of Civil Engineering, Vol. 9, No. 3, September 2011

Initialize randomly all particles positions k
iX and velocities k

iV (from the range of [xmin ,xmax])
FOR(each particle i in the initial population)

WHILE(the constraints are violated)
Randomly re-generate the current particle Xi

END WHILE
Generate local best: assign k

i
k
i XP =

Generate global best: Find minimum of )( k
ip XF , assign kk

g XP min=
END FOR

WHILE(stopping criterion not satisfied)
FOR(each particle (ant) i in the swarm(colony))

Generate the velocity and update the position of the current particle (vector) k
iX

Variable boundary handling: Check whether each component of the current vector violates
its corresponding boundary or not. If it does, select the corresponding component of the
vector from k

iP based on harmony search scheme.

Evaluate the merit value )( k
ip XF of the current particle

Generate P solutions k
iZ using Eq. (27)

Variable boundary handling: Check whether each component of the current vector violates
its corresponding boundary or not. If it does, select the corresponding component of the
vector from k

iP based on harmony search scheme.

Evaluate the merit value )( k
ip ZF of the current ant

Update current particle position: Compare the merit value of current ant with
current particle. If )()( k

ip
k
ip XFZF < , assign )()( k

ip
k
ip ZFXF = and k

i
k
i ZX =

Update local best: Compare the merit value of )( k
ip PF with )( k

ip XF ,

If )()( k
ip

k
ip PFXF < , assign k

i
k
i XP =

END FOR
Update global best: Find the global best position in the swarm.

if )()( k
gp

k
ip PFXF < , assign k

i
k
g XP =

END WHILE

Table 3. The pseudo-code for HPSACO

Fig. 5. Three-bay, four-story reinforced concrete frame
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HPSACO

x 103

x 103

HBB-BC: 125 Analyses=1 Iteration
HPSACO:250 Analyses=1 Iteration

Fig. 6. Convergence rate comparison between the two algorithms
for the three-bay, four-story reinforced concrete frame
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by these two algorithms . Though HBB-BC and HPSACO
obtained the same solution, but the convergence rate of the
HBB-BC is better than HPSACO. Fig. 6 provides a
comparison of convergence rates of the HBB-BC and
HPSACO. The demand/capacity ratio (DCR), i.e. the
maximum of (Mu/φMn) for beams, and the maximum of
(Lu/Lm) for columns, in the members of the optimum
solution obtained by HBB-BC for the three bay, four-story
RC frame is given in Fig. 7. Based on this figure, the using
of section capacity in all beams is high, but in some
columns is low. Also Table 5 demonstrates the
maximum values of demand/capacity ratio under critical
loading case for member groups in the optimum solutions
obtained by both algorithms. For the HBB-BC algorithm,
the ratio of the sampling space to the entire search space is  

(125G74) / (1014G1014G55G55)=2.97G10-6.

6.2. A three bay, eight-story reinforced concrete frame

Fig. 8 illustrates the geometry, loading and grouping
details of a three bay, eight-story RC frame to be
optimized. The frame is composed of 56 elements, 24 beams
and 32 columns, which are divided into three beam groups
and four column groups. The gravity and lateral loads are
applied on this frame. A population size of 250 is
considered for both algorithms. HBB-BC and HPSACO
achieved to optimum costs of 48263 $ and 48514 $ after 158
and 106 iterations, respectively. Table 6 provides a
comparison of the obtained results by these two
algorithms. Unlike the first example, here the HPSACO
could not find the optimum result as well as HBB-BC. A
comparison of convergence rates of HBB-BC and
HPSACO is given in Fig. 9. The demand/capacity ratio for
beams and columns of the optimum solution attained by
HBB-BC for this RC frame is demonstrated in Fig. 10. From

202 A. Kaveh, O. Sabzi

Critical load case
Strength ratioElement

groupMember type HBB-BCHPSACO
Load case 10.921360.92136B1Beam
Load case 10.922320.92232B2 
Load case 10.879630.87963C1Column
Load case 10.890300.89030C2 

Table 5. Maximum strength ratio for member groups in the three
bay, four-story RC frame

Fig. 7. Strength ratio in the members of the optimum solution
obtained by HBB-BC for the three bay, four-story reinforced

concrete frame

Fig. 8. Three-bay, eight-story reinforced concrete frame

OPTIMIZATION RESULTS

Element
groupMember type

HBB-BCHPSACO
ReinforcementsSectional dimensionsReinforcementsSectional dimensions

Negative
moment

Positive
moment

Depth
(mm)

Width
(mm)

Negative
moment

Positive
moment

Depth
(mm)

Width
(mm)

5-D223-D195003005-D223-D19500300B1Beam
5-D224-D195003005-D224-D19500300B2

8-D253503508-D25350350C1Column
6-D253003006-D25300300C2

7435Number of iterations
92508500Number of analyses
3532.67Computing time (second)

22207 $22207 $Frame cost

Table 4. Result of optimum design for three bay, four-story reinforced concrete frame
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this figure, it can be observed that with the exception of a few
columns, the using of section capacity in the majority of
elements is high. As well the maximum demand/capacity
ratio under critical loading case for member groups in the
optimum solutions achieved by both algorithms is shown in
Table 7. In the HBB-BC method, the order of sampling space
relative to domain space is (250G158)/[(1014)3G(55)4] =
4.14G1012.

6.3. A three bay, twelve-story reinforced concrete frame

Fig. 11 represents the geometry, loading and grouping
details of a three bay, twelve-story RC frame to be
optimized. The frame is consisted of 84 elements, 36 beams
and 48 columns, which are collected in three beam groups
and six column groups. A population size of 300 is
considered for both algorithms. The HBB-BC and
HPSACO achieved to optimum costs of 81183 $ and 83250
$ after 182 and 108 iterations, respectively. Table 8 lists the
optimal solutions achieved by two algorithms, and
compares them with each other. Unlike the first example,
here the HPSACO could not find the optimum result as well
as HBB-BC. Fig. 12 provides a comparison of convergence
rates of HBB-BC and HPSACO. The demand/capacity ratio
for beams and columns of the optimum solution attained by
HBB-BC for this RC frame is demonstrated in Fig. 13.
From this figure, it can be noticed that with the exception of
a few columns, the using of section capacity in the majority
of elements is high. In addition, the maximum DCR under
critical loading case for member groups in the optimum
solutions attained by these two algorithms is shown in
Table 9. In the HBB-BC method, the order of sampling
space relative to domain space was (300 182)/[(1014)3

(55)6]= 1.89 10-15. In this example, for HPSACO method
almost the half of computing time is consumed to find the
feasible first population, it means if frame is large and a
great loading applies on it, finding the feasible first
population lasts.
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Fig. 9. Convergence rate comparison between the two algorithms 
for the three-bay, eight-story reinforced concrete frame

Fig. 10. Strength ratio in the members of the optimum solution
obtained by HBB-BC for the three bay, eight-story reinforced

concrete frame

Critical load
case

Strength ratioElement
groupMember type HBB-BCHPSACO

Load case 20.944020.94039B1Beam
Load case 20.912930.92315B2
Load case 10.997250.99783B3
Load case 30.923650.90198C1 Column
Load case 20.963840.98237C2
Load case 10.884090.87317C3
Load case 20.928800.95716C4

Table 7. Maximum strength  ratio for member groups in the three
bay, eight-story RC frame

OPTIMIZATION RESULTS

Member type

HBB-BCHPSACO

Element
group

ReinforcementsSectional dimensionsReinforcementsSectional dimensions
Negative
moment

Positive
moment

Depth
(mm)

Width
(mm)

Negative
moment

Positive
moment

Depth
(mm)

Width
(mm)

6-D223-D195003006-D223-D19500300B1Beam
6-D223-D195003006-D223-D19500300B2
5-D223-D195003005-D223-D19500300B3

8-D254004008-D25400400C1Column
12-D254504508-D25500500C2
8-D253503508-D25350350C3
8-D253503508-D25350350C4

158106Number of iterations
3950052500Number of analyses
8.511.23Computing time (minute)

48263 $48514 $Frame cost

Table 6. Result of optimum design for three bay, eight-story reinforced concrete frame
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7. Conclusions

In this paper, the HBB-BC and HPSACO algorithms are
employed for optimal design of reinforced concrete planar
frames. The HBB-BC is a combination of the big bang-big
crunch algorithm and harmony search scheme. In this
method, each component of new vectors (candidate
solutions) generated by the BB-BC, which violated the

variables boundary, must be regenerated based on harmony
search. The performance and the convergence rate of the
HBB-BC are better than BB-BC. HPSACO is based on
PSOPC, ACO and HS. In this algorithm, the ACO helps PSO
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Fig. 12. Convergence rate comparison between the two algorithms
for three-bay, twelve-story reinforced concrete frame

Fig. 13. Strength ratio in the members of the optimum solution
obtained by HBB-BC for the three bay, twelve-story reinforced

concrete frame

OPTIMIZATION RESULTS

Element
groupMember type

HBB-BCHPSACO
ReinforcementsSectional dimensionsReinforcementsSectional dimensions

Negative
moment

Positive
moment

Depth
(mm)

Width
(mm)

Negative
moment

Positive
moment

Depth
(mm)

Width
(mm)

6-D223-D196003507-D223-D19550350B1Beam
6-D225-D195503006-D223-D19550350B2
6-D223-D195003005-D223-D19550350B3

10-D254504508-D25500500C1Column
12-D2560060010-D25650650C2
10-D254004008-D25450450C3
10-D2550050010-D25500500C4
8-D253503506-D25350350C5
4-D254004004-D25400400C6

182108Number of iterations
5460064500Number of analyses
2355Computing time (minute)

81138 $83250Frame cost

Table 8. Result of optimum design for three bay, twelve -story reinforced concrete frame

Fig. 11. three-bay, twelve-story reinforced concrete frame
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procedure in the global exploration phase and HS is
employed for variables boundary handling. In this paper, by
using the capacity of the BB-BC with regard to generation
of new solution, the performance of the HPSACO is
improved. 

According to other research which used the HPSACO to
the optimization of structures, the performance of the
HPSACO is significantly better than other PSO-based
algorithms, such as SPSO, PSOPC and HPSO. In this paper,
it is observed that if the frame is large, HPSACO can not
find a good result as well as the HBB-BC. Furthermore, if
the frame is large and a great loading is applied on it, finding
the feasible first population for the HPSACO increases the
computational cost. In fact, in each iteration of the
HPSACO, two populations were analyzed, one for the PSO
stage and another for theACO stage. Though in HPSACO,
the required numbers of iterations to convergence are less
than that of the HBB-BC, however in large frames, certainly
the required number of analyses is more than that of the
HBB-BC, and this results in the increase of the
computational cost, as well.

Based on the results of the four, eight and twelve story
RC frames, specially the last two examples, although the
order of sampling space relative to domain space was
small, however the HBB-BC is obtained optimal or near
optimal design. This shows the robustness of the HBB-BC.
It should also be mentioned that working with HBB-BC is
much easier than HPSACO, since programming is easier and
also it has no excessive parameters for control. There are
only two parameters α and β , and one can easily find
suitable values for these parameters with a few runs of the
program.

Acknowledgment: The first author is grateful to the Iran
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