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Abstract

Presented is a method of three-dimensional stability analysis of convex slopes in plan view based on the Lower-bound theorem of
the limit analysis approach. The method’s aim is to determine the factor of safety of such slopes using numerical linear finite
element and lower bound limit analysis method to produce some stability charts for three dimensional (3D) homogeneous convex
slopes. Although the conventional two and three dimension limit equilibrium method (LEM) is used more often in practice for
evaluating slope stability, the accuracy of the method is often questioned due to the underlying assumptions that it makes. The
rigorous limit analysis results in this paper together with results of other researchers were found to bracket the slope stability
number to within +10% or better and therefore can be used to benchmark for solutions from other methods. It was found that using
a two dimensional (2D) analysis to analyze a 3D problem will leads to a significant difference in the factors of safety depending
on the slope geometries. Numerical 3D results of proposed algorithm are presented in the form of some dimensionless graphs which
can be a convenient tool to be used by practicing engineers to estimate the initial stability for excavated or man-made slopes.
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1. Introduction

The assessment of slope stability has received much
attention across geotechnical communities because of its
practical importance. This problem has drawn the attention of
many investigators [1-7] in the past and continues to do so.
Limit-equilibrium analysis has been the most popular method
for slope stability calculations. A major advantage of this
approach is that complex soil profiles, seepage, and a variety
of loading conditions can be easily dealt with. Two
dimensional (2D) limit equilibrium analyses, such as Bishop’s
simplified method [2] and Janbu’s simplified method [7], are
two of the most popular approaches used to evaluate slope
stability. It is commonly believed that 2D solutions utilized in
design will obtain a conservative evaluation for a three
dimensional (3D) slope failure. However, as pointed out by
Gens et al. [8], estimates of the mobilized shear strength
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derived from the 2D back analysis for a 3D slope, will be
unsafe.

In order to account for the three dimensional effects on slope
stability many 3D methods had been proposed [9-11]. The
majority of methods proposed in these studies are simply
based on extensions of Bishop’s simplified [2], Spencer’s
[12], or Morgenstern and Price’s [13] original 2D limit
equilibrium slice methods. Many comparisons of limit-
equilibrium methods indicate that techniques that satisfy all
conditions of global equilibrium give similar results.
Regardless of the different assumptions about the interslice
forces, these methods give values of the safety factor that
differ by no more than 5%. Even though it does not satisfy all
conditions of global equilibrium, Bishop's simplified method
also gives very similar results. Partly because of this and
partly because of its simplicity, the slice method of limit-
equilibrium analysis proposed by Bishop [2] has been used
widely for predicting slope stability. Because of the
approximate and somewhat arbitrary nature of limit-
equilibrium analysis, concern is often voiced about how
accurate these types of solutions really are. Using the limit
theorems can not only provide a simple and useful way of
analyzing the stability of geotechnical structures, but also
avoid the shortcomings of the arbitrary assumptions
underpinning the LEM.
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Numerous methods have been proposed for slope stability
analysis. In general, these methods can be classified into the
following types: (1) limit equilibrium approach which is the
most common; (2) numerical solutions based on Finite
Element Method; and (3) limit analysis approach.

Stability problems of slopes are often analyzed by methods
based on two-dimensional models, neglecting the end effects
of the failure mechanism. However, the failure regions of
actual slopes usually have finite dimensions and therefore a
three-dimensional (3D) approach is more appropriate to
analyze such stability problems. 3D slope stability problems
fall into three categories:

1. Slopes that are subjected to loads of limited extent at the
top.

2. Slopes in which the potential failure surface is constrained
by physical boundaries, such as a dam in a narrow rock-walled
valley.

3. Slopes with nonplanar surfaces such as road embankments
at curves, or mining waste where the granular material heaps
have well-defined corners.

Most analyses for slope stability have dealt with straight
slopes with a planar surface. However, there are many convex
slopes in plan view with nonplanar surfaces. During the past
de—cades, the influence of plan curvature on the stability of
slopes has been investigated mainly by Leshchinsky and Baker
[11], Giger and Krizek [14,15], Baker and Leshchinsky [16],
Xing [17], and Ohlmacher [18] for some special cases. Giger
and Krizek [14,15] used the upper-bound theorem of limit
analysis to study the stability of a vertical corner cut subjected
to a local load. They assumed a kinematically admissible
collapse mechanism and, through a formal energy formulation,
assessed the stability with respect to shear strength of soil.
Leshchinsky et al. [19] presented a 3D analysis of slope
stability based on the wvariational limiting equilibrium
approach and proved that it can be considered as a rigorous
upper bound in limit analysis. Leshchinsky and Baker [11]
used a modified solution of the approach mentioned to study
3D end effects on stability of homogeneous slopes constrained
in the third direction and applied it to investigate the stability
of vertical corner cuts. Using a variational approach, Baker
and Leshchinsky [16] discussed the stability of conical heaps
formed by homogeneous soils. Xing [17] proposed a 3D
stability analysis for concave slopes in plan view using the
equilibrium concept. Based on the limit equilibrium method,
Ohlmacher [18] investigated a case study including convex
and concave slopes.

Michalowski [20] introduced a rigorous 3D approach in the
strict framework of limit analysis for homogeneous and straight
slopes. In his analysis, the geometry of slope and slip surface
was unrestricted and both cohesive and frictional soils were
included. Farzaneh and Askari [21] improved Michalowski’s
algorithm in the case of 3D homogeneous slopes and extended
it to analyze the stability of nonhomogeneous slopes. Duncan
[22] provides a comprehensive review for two dimensional (2D)
and three dimensional (3D) LEM and FEM estimates of slope
stability, and therefore the review of literature herein will be
referring to more recent publications (post 1996).

In most cases it is not feasible to perform a full displacement
finite element analysis and as such the three dimen—sional
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effects of the slope in question are often ignored. However,
ignoring the 3D effects when analyzing slopes can lead to
unsafe answers. In the back analyses of shear strengths, for
example, neglecting the 3D effects will lead to values that are
too high, and therefore affect any further stability assessments
at the same location. As stated previously, one aim of this
study is to produce 3D stability charts that can be used by
practicing engineers, extending those currently used regularly
for 2D slope stability evaluation.

This paper is devoted to use linear finite element, lower-
bound solution method and an optimization approach to make
the maximum lower bound solutions for 3D convex slope
stability. The main purpose of this paper is to provide sets of
3D stability charts for homogeneous soil slopes by using the
finite element lower bounding method and upper-bound
results of Farzaneh and Askari [23] which can bracket the
actual stability numbers from above and below. The chart
solutions in this study can be seen as convenient tools to be
used by practicing engineers to estimmate the initial stability
for excavated or man-made slopes.

2. Background

Figure 1 shows a typical load-displacement curve as it might
be measured for a surface footing test. The curve consists of an
elastic portion; a region of transition from mainly elastic to
mainly plastic behavior; a plastic region, in which the load
increases very little while the deflection increases manifold;
and finally, a work-hardening region. In a case such as this,
there exists no physical collapse load. However, to know the
load at which the footing will deform excessively has obvious
practical importance. For this purpose, idealizing the soil as a
perfectly plastic medium and neglecting the changes in
geometry lead to the condition in which displacements can
increase without limit while the load is held constant as shown
in Fig. 1. A load computed on the basis of this ideal situation
is called plastic limit load [21]. This hypothetical limit load
usually gives a good approximation to the physical plastic
collapse load or the load at which deformations become
excessive. The methods of limit analysis furnish bounding
estimates to this hypothetical limit load.

The theorems of limit analysis can be established directly for a
general body if the body possesses the following ideal properties:

1. The material exhibits perfect or ideal plasticity, i.e., work
hardening or work softening does not occur. This implies that
stress point can not move outside the yield surface.

2. The yield surface is convex and the plastic strain rates are

Load
4 .
Work Hardening
Ao Limit Load
© Plastic
Elastic- Plastic
Elagtic
Displacement
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|

Fig. 1. Load-displacement curve
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derivable from the yield function through the associated flow rule.

3. Changes in geometry of the body that occur at the limit
load are in significant; hence the equations of virtual work can
be applied.

The limit analysis method models of the soil as a perfectly
plastic material obeying an associated flow rule. With this
idealization of the soil behavior, two plastic bounding
theorems (lower and upper bounds) can be proved. According
to the upper bound theorem, if a set of external loads acts on a
failure mechanism and the work done by the external loads in
an increment of displacement equals the work done by the
internal stresses, the external loads obtained are not lower than
the true collapse loads. It is noted that the external loads are
not necessarily in equilibrium with the internal stresses and the
mechanism of failure is not necessarily the actual failure
mechanism. By examining different mechanisms, the best
(least) upper bound value may be found. The lower bound
theorem states if an equilibrium distribution of stress covering
the whole body can be found that balances a set of external
loads on the stress boundary and is nowhere above the failure
criterion of the material, the external loads are not higher than
the true collapse loads. It is noted that in the lower bound
theorem, the strain and displacements are not considered and
that the state of stress is not necessarily the actual state of
stress at collapse. By examining different admissible states of
stress, the best (highest) lower bound value may be found.

The bound theorems of limit analysis are particularly useful
if both upper and lower bound solutions can be calculated,
because the true collapse load can then be bracketed from
above and below. This feature is invaluable in cases for which
an exact solution cannot be determined (such as slope stability
problems), because it provides a built-in error check on the
accuracy of the approximate collapse load.

Although the limit theorems provide a simple and useful way
of analyzing the stability of geotechnical structures, they have
not been widely applied to the 3D slope stability problem.
Currently, most slope stability evaluations based on the limit
theorems have used the upper bound method alone, such as
Chen et al. [24,25], Donald and Chen [26], Farzaneh and
Askari [21], De Buhan and Garnier [27], Michalowski [5,28-
29], and Viratjandr and Michalowski [30]. Major contributions
for soil slope stability analysis were presented by Michalowski
and his co-worker who investigated local footing load effects
on the 3D slope stability [5] and provided sets of stability
charts for cohesive-frictional slopes which took seismic
loadings and pore pressure into account. In addition,
Michalowski [29] employed the limit analysis technique to
estimate the stability of uniformly reinforced slopes.

Because of the difficulties of constructing statically
admissible stress fields manually, the application of limit
analysis has in the past almost exclusively concentrated on the
upper bound method. In fact, the authors are not aware of any
rigorous lower bound solutions for the stability of slopes in
cohesive-frictional soils. Although the upper bound solutions
may be used as an estimate for the true collapse load, it is the
lower bound solutions that are generally more useful in
practice, because they are inherently conservative.

A lower bound solution is obtained by insisting that the
stresses obey equilibrium and satisfy both the stress boundary
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conditions and the yield criterion. Each of these requirements
imposes a separate set of constraints on the nodal stresses. In
the lower bound finite-element analysis, statically admissible
stress discontinuities are permitted at edges shared by adjacent
triangles and also along borders between adjacent rectangular
extension elements. The finite element lower bound limit
analysis techniques developed by Lyamin and Sloan [31] and
Krabbenhoft et al. [32] provide a useful method for dealing
with the problems of slope stability (Appendix 1). These
numerical lower bound methods have been used to provide
chart solutions by Yu et al. [33] for 2D purely cohesive and
cohesive-frictional soil slopes. In this paper, similar
formulations are used and described with newly types of
elements for investigating the effect of convexity in slopes.

Proposed Solution

Consider a body with a volume V and surface area A, as
shown in Fig.2. Let t and q denote, respectively, a set of fixed
tractions acting on the surface area A, and a set of unknown
tractions acting on the surface area A,. Similarly, let g and h be
a system of fixed and unknown body forces which act,
respectively, on the volume V. Under these conditions, the
objective of a lower bound calculation is to find a stress
distribution which satisfies equilibrium throughout V, balances
the prescribed tractions t on A,, nowhere violates the yield
criterion, and maximizes the integral

Q=1/, qdA+][, hav (1)

Since this problem can be solved analytically for a few
simple cases only, it is searched a discrete numerical
formulation which can model the stress field for problems with
complex geometries, inhomogeneous material properties, and
complicated loading patterns. The most appropriate method
for this task is the finite element method.

Disregarding, for the moment, the type of element that is
used to approximate the stress field, any discrete formulation
of the lower bound theorem leads to a constrained
optimization problem of the form

Maximize Objective Function subject to
a;(x)=0, iel={1,..,m}
fix) <0, je]={1,..,r} )
X €ER™
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Fig. 2. A body subjected to the surfaces and body forces [31]
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where x is an n-dimensional vector of stress and body force
variables. Th e equalities defined by the functions ; follow
from the element equilibrium, discontinuity equilibrium, and
boundary and loading conditions, while the inequalities
defined by the functions f; arise because of the yield
constraints and the constraints on applied forces. Here
Objective Function is described as safety factor of a three
dimensional slopes and a; is a global matrix which contains
equilibrium, discontinuity and boundary equations. In
addition, f; produces the conditions which nodal stresses will
be less than the yield surface. Maximizing Objective Function
leads to use an optimization approach. In this paper the
nonlinear optimization based on a fast quasi-Newton method
whose iteration count is largely independent of the mesh
refinement, is selected for finding the maximum lower-bound
solution of safety factor which satisfying the element
equilibrium, discontinuity equilibrium, and boundary and
loading conditions. The global form of each element in this
solution is shown in Fig. 3.As it is seen the stresses variation
between each nodes of element is assumed to be linear, thus
this type of finite element is called Linear Finite Element. The
following section gives a detailed description of the
discretization procedure for the case of 3-dimensional linear
elements.

Unlike the usual form of the finite element method in which
each node is unique to a particular element, multiple nodes can
share the same coordinates, and statically admissible stress
discontinuities are permitted at all interelement boundaries.
The typical 3D slope geometry details for the problem of this
paper are shown in Fig. 4.

In this paper, all models are organized from some prismatic
units as is shown in Fig.5. Using this type of unit as a base of
modelings, all kind of straight, convex, concave and every

2
Fig. 3. Global form of elements

LAl [ »A
(@)
H
B TRARRK
(b)

Fig. 4. Geometry details of problem (a). Plan (b). Section A-A
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other arbitrary shape in plan view of slopes can be created.
Each discussed unit is combined from three volumetric
pyramid elements which are shown in Fig.6.

The global form of modellings is consisted of two plans
which one locates at the top and the other at the bottom of the
model. Fig.7. shows the top and bottom plans of modelling.
Between each pair of slices in the plans (1 to 12), 3 elements
in the form of a prismatic unit shown in Fig. 5 are constituted.
For higher slopes, various numbers of prismatic units are used
in the height of the slopes.

The typical 3D slope model for the problem of this paper is
shown in Fig. 8. This model is consisted of 12 units and
therefore 36 elements.

The extension elements may be used to extend the so—lution
over a semi-infinite domain and therefore provide a com—plete
statically admissible stress field for infinite half-space
problems. In fact, the extension elements shown in Fig. 7 can
be used readily to extend the stress fields into a semi-infinite
domain which is discussed afterwards. Because this paper is
concerned mainly with the stability of finite slopes resting on
a firm base, extension elements are needed only behind of
slopes (shown in Fig. 7).

3. Objective function and loading constraints

The purpose of lower bound limit analysis is to find a
statically admissible stress field which maximizes the objective
function carried by a combination of surface tractions and body
forces (Figure 2). The distribution of the latter may either be
known or unknown, depending on the problem. In the
terminology of slopes stability, safety factor is known as the
objective function, since this is the quantity it is wanted to
maximize in lower bound case. Otherwise the general form of

Fig. 5. Prismatic unit of modelings

12 11

10

5 1

Fig. 6. Elements used for Lower Bound Limit Analysis
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(a). Bottom Plan

Extension Elements
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Fig. 7. Bottom and top plans of modelling, extension of the stress fields into a semi-infinite domain

the yield condition for a perfectly plastic solid has the form

fo)=0 (€)

Where f is a convex function of the stress components and
material constants. The solution procedure presented later in
this paper does not depend on a particular type of yield
function, but does require it to be convex and smooth.
Convexity is necessary to ensure the solution obtained from
the optimization process is the global optimum, and is actually
guaranteed by the assumptions of perfect plasticity.
Smoothness is essential because the solution algorithm needs
to compute first and second derivatives of the yield function
with respect to the unknown stresses. For yield functions
which have singularities in their derivatives, such as the
Mohr—Coulomb criteria, it is necessary to adopt a smooth
approximation of the original yield surface. A plot of this
function in the meridional plane is shown in Fig.9.

Defining tensile stresses as positive, the Mohr-Coulomb
yield function may be written as

f=(0,-6, )H(o,F0, )sinD4-2c, cosDy 4)

where the principal stresses are ordered so that ¢,>0,>0; and
cgand &, are

Fs=c/c, (5)
Fs = tan(@)/tan(2,) (6)

which C and & denote, respectively, the cohesion and friction

Fig. 8. Finite element Model
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angle of the soil. Assuming F =Fs =Fs the objective function
define as maximizing the safety factor by satisfying the yield
function. This implies that the stresses at all nodes in the finite
element model must satisfy the yield condition.

Thus, in total, the yield conditions give rise to some non-linear
inequality constraints (considering composite yield criteria as
one constraint) on the nodal stresses. Because each node is
associated with a unique set of stress variables, it follows that
each yield inequality is a function of an uncoupled set of stress
variables 07;. Each admissible stress field has its own safety
factor. Using an optimization method of nonlinear programming
which is based on Newton’s method the highest lower bound
safety factor is attained. In this method, the non-linear equations
at the current point k are linearized and the resulting system of
linear equations is solved to obtain a new point k + 1. The
process is repeated until the governing system of non-linear
equations is satisfied. Thus, the highest lower bound safety
factor of admissible stress fields is searched; this feature can be
exploited to give a very efficient solution algorithm.

4. Extension of Stress Field into Semi-infinite Domain

When the lower bound method described previously is applied
to problems with semi-infinite domains, only part of the body is
discretised. This means that the optimized stress field does not
necessarily satisfy equilibrium, the stress boundary conditions
and the yield criterion throughout the entire domain and,
therefore, cannot be used to infer a rigorous lower bound on the
collapse load. Although this type of solution, which is known as
a partial stress field, may actually furnish a good estimate of the
true collapse load, a fully rigorous lower bound can be obtained
only by extending the stress field over the semi-infinite domain
in such a way that all the conditions of the lower bound theorem

Mohr-Cowjomb

"W Hyperbolic Approximation

»
»
Om

Fig. 9. Hyperbolic approximation to Mohr—Coulomb yield function
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are fulfilled. This process is often difficult, especially for cases
involving irregular boundary shapes, and is frequently omitted
in hand calculations.

To resolve this situation some extension elements which are
deployed around the periphery of the mesh are used. These are
constructed so that they extend the stress field beyond the
limits of the grid in such a way that it is statically admissible.

A D-dimensional extension element is much like a regular
lower bound finite element in that the stress field is defined by
the stresses at D+1 nodes and the body forces are assumed to be
constant. Indeed, as with any lower bound element, the stresses
must satisfy the equilibrium, stress boundary and yield
conditions. Consider the 2D case shown in Figurel0, where a
linear expansion is used to model the stresses across and outside
a three-noded extension element. Provided the equilibrium and
stress boundary conditions are satisfied within the triangle, then
they are automatically satisfied for any point p outside the
triangle. This implies that all extension elements are subject to
the same equilibrium and stress boundary constraints as regular
elements. For D-dimensional geometries, a maximum of D
different types of extension elements are required. Although
they are restricted to certain types of yield criteria, extension
elements are attractive because they guarantee that the solution
obtained is a rigorous lower bound [31].

The proposed algorithm is concerned with the following
domains:

1. Mesh generating using top and below plans

2. Deriving equilibrium, discontinuity and boundary matrices
for each element

3. Deriving A_"global" in which attains following equation:

Aglobal Xe= bglobal (7)

Where x¢ is unknown vector which includes the stresses in
each node and the safety factor.

4. Optimizing process: This optimization is ascribing to
check the maximum lower bound solution using nonlinear
programming.

5. Constrains: This algorithm contains both equality and
inequality constrains. The equality constrain is summarized in
a global matrix contains equilibrium, discontinuity and
boundary equations and the inequality constrains are refer to a.
Yield Surface and b. Extension elements.

The typical lower bound finite element meshes and boundary
conditions used to analyze the 3D slope problem are illustrated
in Fig.8. The stability of homogeneous slopes is usually
expressed in terms of two dimensionless stability numbers in
the following form

Extension Element

Fig. 10. Approximation of stress field inside and outside the
extension element
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N&=yHF /c ®)
Age=N, tand/F )

where N, is the stability number, y is the soil unit weight, H is
the slope height, Fs is the safety factor of the slope. Also ¢ and @
are known as the strength parameters of the material; ¢ represents
the cohesion and @ represents the angle of internal friction.

5. Comparison with other results

One of the most important parameter in analyzing is number
of used elements in models. Certainly, increasing of this
quantity leads to increase the accuracy of the results. But using
high number of elements in modelling is caused to make time
consuming runs, therefore some models were made to
compare the results by different number of elements and
therefore make a decision on number of elements to use and
suitable time taken in each run.

For constant quantity of slope angle =30 and 1,,=2, the
results of some straight slopes for En=18,24,36 and 72 are
compared which is shown in Fig.11.Where B is degree of the
slope and En is number of used elements. As it is seen,
increasing in En results in decreasing the interspaces between
lower bound and upper bound solutions. It means that by
increasing En, the accuracy of results is increased but its rate
decreases, as Fig.11 shows. Therefore it can be concluded that
for higher number of elements, the difference between results
can be connivance. Thus in this paper, all numerical results are
made of 36 eclement because of low rate of variations
afterwards (Each run approximately consumes 12 minutes).
For a validation, the results of the current approach can be
compared with those of other investigators for straight slopes.
Fig. 12 and 13 show a sample of this modelling and the forms
of the plans, respectively. Different methods have been
proposed for 3D analysis of straight slopes by Baligh and

Upper Bound

Ns(3D)/Ns(2D!

0 2 4 6 LH 8 10 12

Fig. 11. Effect of element numbers in accuracy of results

Fig. 11. Effect of element numbers in accuracy of results
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Extension Elements
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(a). Bottom Plan

Extension Elements

Fix Bounded
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K=}

Fix Bounded

(b). Top Plan

Fig. 13. Bottom and top plans of modelling for a straight slope

Azzouz [34], Hovland[9], Ugai [35], and Leshchinsky and
Baker [11]. Com paring the current results with most of these,
good agreement is found among them. Ugai [35] extended
Baker variational limiting equilibrium approach to 3D
cohesive slopes. Leshchinsky and Baker [11] extended a
modified solution of variational approach in 3D stability of
slopes which has been proved by them to be equivalent to the
upper bound solution in the framework of limit analysis.

Fig. 14 shows the ratio F;p/F, (Fpis the safety factor in iD
analysis) as a function of L/H obtained by Ugai [35],
Leshchinsky and Baker [11], Farzaneh and Askari [36]
(the upper-bound solution) and the present solution. As it is
seen, the results of current solution underestimate in good
accuracy.

6. Numerical Results

1.6. Stability charts for homogeneous convex slopes based on
the numerical limit analyses

The 3D chart solutions for homogeneous convex slopes in
plan view obtained from the numerical upper and lower bound
analysis are displayed in Figs. 15-18 for a range of slope angles
(f), the relative curvature radius of slope (RyH) and L/2H
ratios. The stability numbers for 2D case are obtained from
bishop’s simplified method. It can be noted that the upper and
lower bound limit analysis solutions bracket a range of stability
numbers (N;) to within £10% or better for 3D cases. The upper
bound results were collected from Farzaneh and Askari [36]. As
it is seen no particular trend of the greatest difference in the

1.8 4
16 A
14 4
1.2 A

Fs(3D)/Fs(2D)

08 | Usai .
06 4 Leshechinsky = =emeee—
0.4 4 Farzaneh-Askari(Upper-bound) _———
02 1 current _
0
0 1 2 3 4 5 6 7 8 9

L/H

Fig. 14. Comparison with those of Ugai, Leshchonsky, Farzaneh-
Askari in cohesive soil
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upper and lower bound solutions was observed.

As expected, the stability number N, decreases when f and
the L/2H ratio increase. For a given f3, N, achieve the minimum
value when L/2H goes to infinite. This implies that the factor
of safety will re-duce with increasing L/2H ratio. As is known,
the plain strain analysis does not consider the resistance
provided by the two curved ends of the slip surface. The
boundary resistance from these two curved ends can be seen as
3D end boundary effect which makes the slope more stable.
While increasing the L/2H ratio, the relative contributions of
resistances provided by these two curved ends decrease which
means that 3D end boundary effect reduces. Therefore, using
2D stability numbers will lead to a more conservative slope
design.

Fig. 15-18 presents the stability numbers (N,) obtained from
the upper and lower bound limit analyses for various slope
angles. These numbers can be used for estimating the stability
of the convex slopes without retaining walls and props. A
comparison of the equivalent 2D and 3D cases can be made by
investigating the factor of safety ratio F';,/F,, for the same
slope angle (), slope height (H), unit weight (y) and
dimensionless parameter (1). The ratio F;p/F,, is simply the
ratio of the stability numbers (N,);p/(N,),;p. Changing the
relative curvature radius of slope (Ry/H) shows that convex
slopes in plan view are more stable than straight slopes. In
general, the smaller the ratio Ry/H, is, the higher the stability
of convex slope in plan view. It should be mentioned that with
decreasing A, three-dimensional effects are more significant.
In other words, the effect of curvature of slope is more
important in cohesive soils. Also it can be concluded that the
effect of curvature on the stability of convex slopes is less for
steeper slopes.

7. Example of Application

In order to make comparisons of the factor of safety between
the newly proposed 3D chart solutions and the 2D solution
using bishop’s simplified method, an example is introduced. A
U-shape slope descriptions are as follows: the slope inclination
=60, the height of the slope is H = 10 m, width of the slope is
L=40 m, the soil unit weight is y = 18.5 kN/m3, the friction
angle is @ =10 degree and the cohesion is C=32.5 kPa.

A procedure for obtaining the factor of safety by using the
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Fig. 16. Analysis solution of stability numbers for f=45 and (a). A=0; (b). A=1; (c). A=3; (d). 2=10

chart solutions presented in this study can be summarized in
the following stages.

1. From the slope descriptions, the non-dimensional
parameters A= (18.5x10/32.5)xtan 10=1.

2. For = 60°, the chart solutions shown in Fig. 17b is
employed to determine the safety factor.

3. In Fig. 17b, a straight line passing through the L/2H=2 is

F Askari, A. Totonchi, O. Farzaneh

plotted. This straight line intersects with the upper and lower
bound curves, which are the 3D chart solutions of the
numerical limit analysis.

4. The stability number from 2D limit equilibrium method is
Ns@p) = 7.5. From this intersection points, it can back-figure
the dimensionless parameter Ns;p)/Nsop, from which
the lower bound and the upper bound solutions become as
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Table.1.

The averages of the upper and lower bound safety factors of
R/H=3,4,5 and 10 for L/2H =2 are 1.525, 1.485, 1.478 and
1.468; respectively. The safety factors for the 3D solutions are
around 1 to 1.17 times that of the safety factors of the 2D
solutions. This demonstrates that the factor of safety obtained
from 3D analysis will be always larger or equal to that
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obtained from 2D analysis in convex slopes. Therefore, using
2D solution is conservative for design and non-conservative
when determining strength parameters from a back analysis of
a failed slope. In addition the difference between the upper and
lower-bound factors of safety for this example is found to be
around 17%. This difference decreases slightly when the ratio
of L/2H increases.
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8. Conclusions

Three dimensional stability charts for homogeneous cohesive
slopes have been proposed in this paper. Based on the results
presented, the following conclusions can be made:

1. It should be noted that the true ratio of F;,/F,, has been
bracketed by the numerical upper and lower bound analysis
within a range of +10%or better for all cases considered. The
ratio of F;p/F,, is found to increase with decreasing f and
decreasing L/2H.

2. For the application example presented, the difference
between the upper and lower bound factors of safety is found
to be around 17% and for other quantities of L/2H, the safety
factors for the 3D solutions are around 1 to 1.17 times that of
the safety factors of the 2D solutions.

3. The stability number Ns decreases when f and the L/2H
ratio increase. For a given B, N, achieves the minimum value
when L/2H goes to infinite. This implies that the factor of
safety will reduce with increasing L/2H ratio.

4. Changing the relative curvature radius of slope (RyH)
shows that convex slopes in plan view are more stable than
straight slopes. In general, the smaller the ratio Ry/H, is, the
higher the stability of convex slope in plan view.

5. The effect of curvature on the stability of convex slopes is
less for steeper slopes.

6. It should be mentioned that with decreasing Ag,
three-dimensional effects are more significant. In other words, the
effect of curvature of slope is more important in cohesive soils.
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Appendix 1: Linear Finite Element Formulations

As mentioned before, the finite element formulation is
similar to those of Lyamin and Sloan [11], however in this
study the types of meshes are differed and also these
formulations are applied in seismic analysis.

The stresses, together with the body force components hi
which act on a unit volume of material, are taken as the
problem variables. The vector of unknowns for an element e is
denoted by x, and may be written as

x¢ = {{a}}", .. {a7* 3T {h}TYT, ©)
i=1,...,D;j=i,...,.D

where{o;} are the stresses at node 1 and {(hi } are the
elemental body forces. The variation of the stresses throughout
each element may be written conveniently as

o=Y1N o 2

where N, are linear shape functions. The latter can be
expressed as:

_ 1

Ne=1g

YD ey o |xk 3)

where x, are the coordinates of the point at which the shape
functions are to be computed (with the convention that x,=1),
C is a 4x4 matrix formed from the element nodal coordinates
according to

o )
1
3

x? x2 «x

C = |1 1 2 4
ll X3 x33J “)
I xt x5 x3

and Cy ) is a 3x3 submatrix of C obtained by deleting the lth
row and the kth column of C. In above expressions, the
superscripts are row numbers and correspond to the local node
number of the element, while the subscripts are the column
numbers and designate the coordinate index. Elements in the
first terms, Equation (2) can be written in the more compact
form

Ny = X3 age x (5)

C
ay = (_1)l+k+1| (ll?lk)l ©)

Element equilibrium

To generate a statically admissible stress field, the
stresses throughout each element must obey the equilibrium
equations

90y _
an + hl - gl'

i=123 @)

where o; are Cartesian stress components, defined with
respect to the axes x;, and gi and £, are, respectively, prescribed

and unknown body forces acting on a unit volume of material
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within the element. Writing the governing equations in terms
of stress vector, which reduces the number of unknowns,
Equation (5) becomes in following matrix notation

Aequilxe = bequil (®)

in which 4., is coefficients matrix of equilibrium and b,
is constant matrix of equilibrium. Thus, in total, the
equilibrium condition generates 3 equality constraints on the
element’s variables in three dimensional modeling.

Discontinuity equilibrium

To incorporate statically admissible discontinuities at
interelement boundaries, it is necessary to enforce additional
constraints on the nodal stresses. A statically admissible
discontinuity requires continuity of the shear and normal
components but permits jumps in the tangential stress. Since
the stresses vary linearly along each element side, static
admissibility is guaranteed if the normal and shear stresses are
forced to be equal at each pair of adjacent nodes on an
interelement boundary.

In the previous section, the components of the stress tensor
cry are defined with respect to the rectangular Cartesian
system with axes x;, j=1,2,3. In addition to this global
co—ordinate system, let us define a local system of Cartesian
co-ordinates x', k = 1,2,3, with the same origin but oriented
differently, and consider the stress components in this new
reference system. Assuming these two coordinate systems are
related by the linear transformation

X]'( = ,Bij]', k = 1,2,3 (9)

where Bijare the direction cosines of the x ";-axes with respect

to the x-axes, then the tractions acting on a surface element,

whose normal is parallel to one of the axes x';, are given by the
vector #* with components

tf' = 0y;Bji (10)

The corresponding transformation law for the stress
components is

Okm = 01BkiPm;j amn
Using the definition of the stress vector, and assuming that

the normal to the discontinuity plane is parallel to the axis

x’(9) may be written as

Agisex® = byisc (12)
in which A4, is coefficients matrix and b, is constant

matrix. Hence the equilibrium condition for each discontinuity

generates 9 equality constraints on the nodal stresses.

Boundary conditions

Consider a distribution of prescribed surface tractions 7,
pePwhere P is a set of N, prescribed components, which act
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over part of the boundary area 4,. For the case of a linear finite
element, where the tractions are specified in terms of global
coordinates over the linearized boundary area 44, we can cast
the stress boundary conditions for every node 1 as

ob, Bl = th (13)

Assuming the local coordinate system is chosen with x’
parallel to the surface normal at node /, this type of stress
boundary condition gives rise to the constraints

Apouna*® = bpouna (14)

in which A4, is coefficients matrix and b, is constant
matrix. Thus every node which is subject to prescribed surface
tractions generates a maximum of 3 equality constraints on the
unknown stresses.

Assembly of Constraint Equations

All of the steps that are necessary to formulate the lower
bound theorem as an optimization problem have now been
covered. The only step remaining is to assemble the constraint
matrices and objective function coefficients for the overall
mesh. Using mentioned equations the various equality
constraints may be assembled to give the overall equality
constraint matrix according to
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Aglobal = Zf Aequil + Z?S Agisc + legnABound 15)

where E is the total number of elements, D, is the total
number of discontinuities, B, is the total number of boundary
nodes which are subject to prescribed surface tractions.
Similarly, the corresponding right-hand side vector b is
assembled according to

bglobal = 2115 bequil + le)s bajsc + an bgouna (16)

When the stress field is modeled using linear finite elements,
the objective function and equality constraints are linear in the
unknowns, with the only non-linearity arising from the yield
inequalities. Thus the problem of finding a statically
admissible stress field which maximizes the collapse load may
be stated as

Maximize CTx
Subject to Ax=b (17)
Ji (x)=0,j€Rn
X€eRn

where ¢ is a vector of objective function coefficients of
length n, A is an mxn matrix of equality constraint coefficients,
Ji(x) are yield functions and other convex inequality constraints
and x is a vector of length n which is to be determined.
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