Volume 12, Issue 1 And B (Transaction B: Geotechnical Engineering, January 2014)                   IJCE 2014, 12(1 And B): 1-14 | Back to browse issues page

XML Print


Abstract:   (18393 Views)
Portland cement can be mixed with sand to improve its mechanical characteristics. Many studies are reported in literature on this topic, but the effect of principal stress rotation has not been investigated yet. Considering the inherent anisotropy of most sands, it is not clear whether the added cement shall contribute to equal increase in strength and stiffness at vertical and horizontal directions or not. Furthermore, it is not well understood how the cement as an additive in non-compacted (loose) sand compared to compacted (dense) sand without cement, contribute to improving the material behavior in undrained condition such as limiting the deformations and the liquefaction potential. In this research, undrained triaxial and simple shear tests under different stress paths are carried out on different mixtures of Portland cement (by adding 1.5, 3 and 5 percent) with clean sand to investigate the effect of principal stress rotations. The triaxial test results revealed that the cement mixture reduces the anisotropy, while it improves the mixture mechanical properties compared to compacted sand without cement. The results of the simple shear tests validated the triaxial test results and further clarified the effect of the  parameter or rotation of principal stresses on the behavior of cemented sand mixtures.
Full-Text [PDF 870 kb]   (3655 Downloads)    
Type of Study: Research Paper | Subject: Soil Mechanics Classic

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.