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Abstract 

It is well-known that dam-reservoir interaction has significant effects on the response of dams to the earthquakes. This 

phenomenon should be considered more exactly in the seismic design of dams with a rational and reliable dynamic analysis 

method. In this research, seismic analysis of the dam-reservoir is studied as a wave propagation problem by using Legendre 

Spectral element method (SEM). The special FEM and SEM codes are developed to carry out the seismic analysis of the dam-

reservoir interaction system. The results of both SEM and FEM models are compared considering the accuracy and the time 

consumption of the analysis. Attractive spectral convergence of SEM is obtained either by increasing the degree of the 

polynomials in the reservoir or by the number of elements of dam. It is shown that all boundary conditions of the reservoir 

domain in the SEM are evaluated by the exact diagonal matrices. The SEM leads to the diagonal mass matrix for both dam 

and reservoir domains. The stiffness matrices obtained from the SEM are more sparse than the corresponding stiffness 

matrices in the FEM consequently the SEM needs a significant less time consumption of the analysis. 

Keywords: Spectral element method (SEM), Dam-reservoir interaction, Wave propagation, Finite element method (FEM), 

GLL quadrature. 

 

1. Introduction 

Wave propagation is a common phenomenon that 

appears in many applications. Distribution of 

hydrodynamic pressure during earthquakes in the reservoir 

of dams governed by Helmholtz equation is an acoustic 

wave propagation problem. The estimation of precise 

hydrodynamic forces on the dam faces due to earthquakes 

is an important safety aspect in the analysis and design of 

the dams. On the other hand, economically, it is not 

possible to consider all safety issues. Therefore, to satisfy 

both economic and safety considerations simultaneously, 

an analysis should be conducted to select the better and 

more accurate approach. 

The analysis techniques have been enhanced considering 

the improved capabilities of computer processors and 

increased memory storage. The flexibility of the finite 

element method has motivated researchers to apply this 

technique in the analysis of dam–reservoir systems. For 

efficient numerical solution of the system, the unbounded 

reservoir is truncated at a certain distance away from the 

dam. Accuracy in the results can be obtained by truncating 

the infinite reservoir at a larger distance away from the dam. 

However, this results in an increased cost of computation. 
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There are numerous studies in dynamic analysis of 

dams considering water-structure interaction. The 

hydrodynamic pressure on vertical rigid structure 

subjected to ground motion was first solved analytically by 

Westergaard [1]. The added-mass method originated from 

his paper has influenced the engineering design of dams. 

Since then, many contributions to this subject have been 

reported. In 1967, Chopra [2] developed an analytical 

formulation for the hydrodynamic pressure of 

compressible water on a rigid dam with a vertical upstream 

face under both horizontal and vertical earthquake 

excitation. As the dam is assumed to be rigid in these 

studies, the effects of dam-reservoir interaction cannot be 

considered. Chakrabarti and Chopra [3] studied the effects 

of flexible gravity dam-reservoir interaction by employing 

the first few modes of vibration of the dam obtained with 

an empty reservoir. Chopra and Chakrabarti[4], Hall and 

Chopra [5], Fenves and Chopra[6] considered this issue in 

frequency domain by finite elements. Analysis in the time 

domain was considered by Sharan[7]. 

Spectral element method (SEM) is a highly accurate 

numerical method for wave propagation problems 

extensively studied and used in many engineering fields 

such as computational fluid dynamics [8], seismology [9], 

structural dynamics [10,11], etc.  

Spectral method, as a conventional numerical method 

for partial differential equation, was first developed by 

Navier for problems of elastic sheet in the 1820s. 

However, due to its large amount of calculation, it was 
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only used for single region problems in early period. In 

1984, Patera [8] extended spectral method to many sub 

regions (or elements) by partitioning the given 

computational domain. By combining the spectral method 

with the finite element method, he initiated the idea of the 

spectral element method. Its development was the result of 

combining the accuracy and rapid convergence of the 

pseudo-spectral methods with the geometrical flexibility of 

the FEM. Chebyshev polynomials were the basis 

polynomials for interpolation in the original work by 

Patera[8]. This choice was motivated by the fact that 

expansions with Chebyshev polynomials have the same 

(exponential) convergence as Fourier series. An alternative 

to the Chebyshev SEM was developed by Maday and 

Patera[13], with the use of a Lagrange interpolation in 

combination with the GLL quadrature, leading to a 

diagonal structure of the mass matrix and this nodal 

lumping quadrature has also been termed as optimal 

lumping [14]. This diagonal mass matrix is a very 

significant advantage of Legendre spectral element method 

over classical FEMs, and over variant of SEM based on 

Chebyshev formulation, such as Priolo et al [15].  

The SEM was used for acoustic wave equations by Zhu 

[16] and Degrande and Roeck [17]. Seriani [18] used 

three-dimensional SEM to simulate wave equation and 

element by element method was used. Mehdizadeh and 

Paraschivoiu [19] investigated a two-dimensional 

Helmholtz’s equation by SEM. Komatitsch and Tromp [9] 

introduced SEM for three-dimensional seismic wave 

propagation. Komatitsch and Barnes [20] used SEM for 

wave propagation near fluid-solid interface. 

In this research, two dimensional Legendre spectral 

element methods is applied as an alternative to the finite 

element methods in the dam-reservoir interaction problem 

and efficiency and accuracy of both methods are 

compared. 

2. The Coupled Dam-Reservoir Problem 

The dam-reservoir system can be classified as a 

coupled field problem in which two physical domains of 

fluid and structure interact at the interface plane. In such a 

system, the presence of interaction imposes that the time 

response of both subsystems must be evaluated 

simultaneously. Different techniques have been proposed 

for the simultaneous solution of the dam-reservoir 

interaction problem using the finite element approach. 

Displacement was chosen as response variable for the 

structure while pressure may be chosen as a response 

variable for the fluid (Lagrangian- Eulearian approach). In 

this case, the equation of motion of the coupled dam-

reservoir system is unsymmetrical and stiffness 

proportional damping (Rayleigh damping) is used. 

2.1. Governing equations for fluid and boundary 

conditions 

Neglecting the internal viscosity, and assuming the 

water to be linearly compressible with a small amplitude 

irrotational two-dimensional movement, the hydrodynamic 

pressure distribution in the reservoir system is governed by 

the Helmholtz equation: 

 

   (     )  
 

  
 ̈(     ) (1) 

 

where P(x,y,t) is the hydrodynamic pressure 

distribution in excess of the hydrostatic pressure, c is the 

acoustic wave velocity in water, t is the time variable ( see 

Fig. 1). 

 

 
Fig. 1 The dam-reservoir interaction system with reservoir 

domain boundaries 

2.2. Finite element modeling of the reservoir 

Using the finite element discretization of the fluid 

domain and the Galerkin formulation of Eqn. (3), the wave 

equation can be written in the following matrix form: 

 

[  ]{ ̈}  [ ]{ }  { } (2) 

 

where      ∑    
  ,     ∑   

  and     ∑   
  

.The coefficients    
  ,    

  and   
  for an individual 

element are determined using the following expressions: 
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where    is the element shape function,    is the 

element area and    is the prescribed length along the side 

of boundary elements as shown in Fig. 1. 

The hydrodynamic pressure distributions within the 

domain may be obtained by solving Eqn. (1) with the 

following boundary conditions: 

(1) At the free surface: considering the free surface 

wave, the boundary condition at the free surface is written 

as. 

 
  (     )
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(2) At the dam -reservoir interface: 
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(9) 

 

where   is the density of water and   (     ) is the 

component of acceleration on the boundary along the 

direction of the inward normal n. { ̈   }is the total 

acceleration of dam grids and Q is the coupling matrix 

between dam and reservoir. 

(3) At the reservoir bottom: 

For simplification of the analytical procedures, the 

bottom of the reservoir is generally considered to be rigid, 

which does not represent the actual behavior of the system. 

The absorption of the pressure waves by sedimentary 

material in the reservoir bottom is an important factor that 

may significantly affect the magnitude of the 

hydrodynamic force on the dam. Simple absorption 

boundary condition is used in the current work using the 

following expression [6]: 

 
  (     )

  
     (     )    ̇(     ) (10) 

 

where q is a damping coefficient which is the 

fundamental parameter characterizing the effects of the 

reservoir bottom materials and it defines as [6]: 

 

  
 

 
(
   

   
) (11) 

 

in which   is the ratio of the amplitude of the reflected 

hydrodynamic pressure wave to the amplitude of 

avertically propagating pressure wave incident on the 

reservoir bottom. 
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where A2 is the refraction damping matrix. 

(4)Truncation boundary condition: 

In the finite element modeling of the reservoir a 

suitable boundary condition should be applied along the 

truncation surface. Sommerfeld boundary condition is the 

most commonly used approach which is based on the 

assumption that at a far distance from the dam face, the 

outgoing waves can be considered as plane waves. This 

boundary condition is the most suitable for the time 

domain analysis. Consequently in the present analysis, the 

Sommerfeld radiation boundary condition is used as the 

following formulas: 
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∫       
  

] { ̇}  [  ]{ ̇} (14) 

 

where A1 is the radiation damping matrix. The physical 

meaning of the boundary condition is equivalent to adding 

dampers to absorb the outgoing waves in the truncation 

boundary. 

2.3. Coupling of dam and reservoir equations 

Finally the dam-reservoir interaction is a classic 

coupled problem, which contains two differential 

equations of the second order. The equations of the dam 

structure and the reservoir can be written in the following 

form: 

 

[ ]{ ̈}  [ ]{ ̇}  [ ]{ }

 {  }  [ ]{ ̈ }  [ ]{ } 
(15) 

[ ]{ ̈}  [ ]{ ̇}  [ ]{ }  {  }   [ ]{ ̈   } (16) 

 

Where[M], [C] and [K] are the mass, damping and 

stiffness matrices of the dam and [E]=[E1]+[E2], 

[A]=[A1]+[A2] and [H] are the matrices representing the 

mass, damping and stiffness of the reservoir, respectively. 

[Q] is the coupling matrix, {F1}is the vector of body force 

and hydrostatic force, {F2} is the component of the force 

due to acceleration at the boundaries of the dam-reservoir 

and dam-foundation. [P], [U] and { ̈ } are the vectors of 

the hydrodynamic pressures of the reservoir, the 

displacements of the dam and the ground accelerations, 

respectively. { ̈   }  { ̈}  { ̈ } and ρ is the density of 

the fluid. The over-dot represents the time derivative. 

3. Solution of the Coupled Equations 

3.1. Staggered method 

There are different approaches to solve the coupled 

field problems. Three categories of the approaches are 

field elimination, simultaneous solution and partitioned 

solution. The main disadvantage of the first two categories 

of solution occurs from the difficulties encountered in 

using available software, while the partitioned solution has 

the capability of using existing software for each 

subsystem. The staggered solution is a partitioned solution 

procedure that can be organized in terms of sequential 

execution of a single-field analyzer [21]. A simple concept 

of this method at any time step as follows: 

1. An arbitrary       is substituted into Eqn. (15) to 

calculate  ̈. 

2. Calculated  ̈ is introduced in Eqn. (16) to obtain P. 

3. If         don’t be lower than a reasonable 

tolerance, P is substituted again in the Eqn. (15) then the 

new  ̈ is calculated to obtain new P and the cycle of 1, 2 

continues until convergence. 

However it is better that introduce previous time step P 
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as      for rapid convergence at the initial of each time 

step. 

3.2. Time-stepping scheme of the coupled equations 

Direct integration method is used to find the 

displacement and hydrodynamic pressure at the end of the 

time increment i+1 given the displacement and 

hydrodynamic pressure at time i. Considering the stability 

of the algorithm, an implicit Newmark method is adopted 

in this study. In the interval of        , the assumption 

as follows is used: 

 

 ̇      ̇  [(   ) ̈    ̈    ]   (17) 

          ̇    [(     ) ̈    ̈    ]    (18) 

 

  and   are parameters determined by the requirement 

of scheme stability and integration accuracy. It can be 

proved that the scheme is absolutely stable for time step 

when       (     )  and      [15]. Thus, the 

recurrence formula can be obtained: 
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  [
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  )  ̇  (

 

  
)   ̈ ] 

(19) 

 

and  ̈  on the initial step is obtained by: 

 

 ̈     (         ̇ ) (20) 

 

Although the integration method is absolutely stable, 

the time step has effect on the numerical accuracy, which 

suggests that the time step should be small enough to 

assurance certain degree of accuracy. 

4. Spectral Element Method (SEM) 

The spectral element combines the advantages of the 

Galerkin spectral method with of those in the finite 

element method. This means that, like in the finite element 

methods, the domain is divided into     elements to gain 

the flexibility and matrix sparsity of the finite elements: 

 

 ̅  ⋃ ̅ 

   

   

⋂    

   

   

 (21) 

 

At the same time, the degree of the polynomials N in 

each sub domain is sufficiently high to preserve the high 

accuracy and low storage of spectral methods. 

Convergence is obtained either by increasing the degree of 

the polynomials or by the number of elements    . For 

      a spectral Galerkin method is achieved. If N = 1 

or N = 2 a standard Galerkin finite element method is 

obtained based on linear and quadratic elements 

respectively. 

In each element, the solution is approximated with 

Legendre based polynomials of order N in each spatial 

direction. The basic functions are typically high-order 

Lagrange interpolation polynomials through the local 

Gauss-Lobatto-Legendre integration points defined per 

element. A parent element is introduced in practice to 

simplify the spectral element implementation. A nodal 

basis for the parent element is built by Lagrangian basis 

polynomials associated with a tensor product grid of 

Gauss–Lobatto–Legendre (GLL) nodes. The GLL grid 

nodes in each direction are the roots of the polynomials: 

 

(    )  
 ( )    (22) 

 

where   ( )is the Legendre polynomial of degree N in 

[-1, 1]: 

 

  ( )      ( )     

    ( )  
    

   
   ( )  

 

   
    ( )    

(23) 

The basic functions are constructed as a set of 

Lagrange interpolants. The Lagrange interpolants 

associated with the ith and jth grid node is defined as: 

 

   (   )  ∏
(   ̅ )

( ̅   ̅ )

 

   
   

∏
(   ̅ )

( ̅   ̅ )

 

   
   

 (24) 

 

where r and s are the coordinate system in the parent 

element, and  ̅  is the coordinate of the ith grid node in the 

direction of r and similarly  ̅  is the coordinate of the jth 

grid node in the direction of s. An example of such a grid 

is shown in Fig. 2 for a fourth-order polynomial space. 

The N+1=5 GLL points can be distinguished along the 

horizontal axis. All Lagrange polynomials are, by 

definition, equal to 1 or 0 at each points. Note that the first 

and last points are exactly -1 and 1. Generally the GLL 

points are closer together at the edges and are further apart 

at the center of an element. In the global grid, points lying 

on edges or corners are shared between the elements. The 

contributions to the global system from each element 

sharing a grid point are summed up in the assembly stage. 
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Fig. 2 Lagrange interpolants of degree N=4 on reference segment 

[1,-1] (top) and corresponding SEM element (bottom) 

 

The shape function of the elements can be defined in 

terms of low-degree Lagrange polynomials. In a traditional 

FEM, low-degree polynomials are also used as basis-

functions for the representation of the field variables on 

the elements. In a SEM, on the other hand, a higher-degree 

Lagrange interpolant is used to express functions on the 

elements. Therefore, spectral elements are sub parametric, 

because the interpolant used to describe the geometry is of 

lower order than the interpolant used to define the field 

variable. 

4.1. Numerical integration  

The integrals in weak formulation of the problem have 

to be evaluated by means of a numerical quadrature. The 

integrands appearing in the SEM integrals involve higher 

order polynomials. To evaluate these integrals, quadrature 

rules are more practical. In the FEM Gauss-Legendre 

quadrature is frequently used for this purpose. In SEM, 

GLL quadrature points, shown in Fig. 2 for a parent 

element, are used to numerically evaluate the integrals. 

The advantage of using the same points both for defining 

basis functions and for the numerical quadrature is the 

convenient evaluation of the Lagrange interpolants at the 

grid points: 

 

∫ ∫  (   )    
 

  

 

  

 ∑ ∑      (     )

 

   

 

   

 (25) 

 

where    and    are the GLL quadrature nodes, and wj 

and wk are the weights associated with the quadrature 

nodes. The weights are given by: 

 

   
 

 (   )

 

  
 ( )

 (26) 

where   ( ) is the Legendre polynomial of degree N 

introduced earlier. 

The choice of a quadrature formula is determined by 

the requirement that the integration error has to be of the 

same order or smaller than the approximation error. In the 

case of the stiffness and mass matrices, the quantities to be 

integrated are polynomials of order 2N – 2 and 2N 

respectively. This advocates a Gauss type formula 

associated with the Legendre polynomials because such a 

formula based on N + 1 nodes is exact for polynomials of 

order 2N +1. It is very attractive to use a Gauss quadrature 

based on the Legendre-Gauss-Lobatto points in [−1, 1]. 

This choice combined with the basic functions introduced 

above would result in a diagonal mass matrix which is 

important in the context of iterative or time-dependent 

procedures. Moreover, in 2-D and 3-D cases it allows a 

significant decrease of the number of processes and 

storage necessities for the construction of the stiffness 

matrix. This quadrature is exact for the polynomials of 

order 2N −1. An error occurs because of the mass matrix 

of 2N order, , nevertheless the accuracy of the scheme is 

maintained [22]. Maday and Patera[13] proved that if the 

functions are analytical, this quadrature preserves the most 

attractive property of the spectral methods which is their 

exponential convergence. 

5. Numerical Results 

5.1. Basic parameters 

The tallest monolith of the Pine flat concrete gravity 

dam, located in California, was chosen for the analysis. 

This particular dam was selected because it has been the 

subject of numerous experimental and theoretical studies. 

The dam structure has the crest length of 560 m and 

consists of 37 monoliths 15.2m wide, which the tallest of 

them is 122 m. The concrete is assumed to be 

homogeneous and isotropic, while water is considered as a 

compressible and inviscid fluid. In dam structure, Rayleigh 

damping method is used and its relevant coefficients are 

determined such that damping would be equivalent to 5% 

of critical damping for frequencies close to the first and 

third modes of vibration. The modulus of elasticity, unit 

weight and Poisson’s ratio of concrete were taken as 

2275MPa, 2500 kg/m3 and 0.2, respectively. The dam is 

assumed to be in the case of plain stress. The velocity of 

pressure waves in water was taken as 1440m/s. The depth 

of the reservoir is 116.2 m. Static loading consists of 

weight and hydrostatic pressures which are applied 

initially. Thereafter, dynamic loading is considered. The 

finite and spectral element model of the dam-reservoir 

system is shown in Fig. 3. 
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Fig. 3 The finite and spectral element model of the dam-reservoir problem 

 

Fig. 4 shows 10 sec. of the horizontal S69E component 

of the 21 July 1952 Taft Lincoln earthquake, Kern County 

site record, which is selected for seismic analysis. The 

ground motion has a peak acceleration of 0.157g and the 

time step of 0.01 sec is chosen for the analysis. The 

integration parameters in the Newmark method were taken 

as α=0.25 and δ=0.5. 

 

 
Fig. 4 First 10 sec of the horizontal S69E component of 21 July 1952 Taft Lincoln earthquake, Kern County site record 

 

A special code was developed to carry out the dynamic 

analysis of the system by using the two-dimensional FEM 

and SEM. Numerous studies have been done to choose the 

best geometry and element size in the dam and reservoir 

domain. Dam and reservoir domains are modeled by the 

same method (SEM or FEM) because the interaction 

matrix Q should be integrated by unit numerical 

quadrature rule. Length of the reservoir should be large 

enough to obtain accurate results by the conventional 

boundary conditions unless outgoing waves reflect to the 

reservoir domain and the results will not be accurate. 

Results from different analysis by various element sizes 

and polynomial degrees of the reservoir elements show 

that the square elements with equal grid numbers in two 

directions induced the optimum time of the analysis and 

accurate results. Consequently 200 m length of the 

reservoir domain with 40 m of the element size is used in 

numerical modeling with the same height elements. In 

order to verify the results obtained from the developed 

code, different analyses are carried out and the results are 

compared to previous researches. The horizontal 

displacement at the dam crest obtained from this analysis 

and the results presented by Samii and Lotfi [23] are 

illustrated in Fig. 5. The initial nonzero crest displacement 

represents the deformation due to the weight of the dam 

and the hydrostatic pressure component. Good agreement 

is found between the responses as shown in Fig. 5.  
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Fig. 5 Comparison of the results for the horizontal displacement at the dam crest obtained from the present study and Samii and Lotfi 

 

5.2. Dam only analysis 

The dam only analysis without any interaction is 

carried out by FEM and SEM methods. The same results 

are obtained from the analysis under the static loads using 

both methods. The results of the seismic analysis 

corresponding to the maximum crest displacement and the 

natural frequency of the dam are presented in Table. 1. 

It is demonstrated that although for linear elements the 

results indicates considerable discrepancies but for 

quadratic elements good agreement is achieved. In fact, 

the SEM uses powerful Spectral convergence to reach 

FEM rapidly by increasing of the degree of interpolation 

polynomial. The results for the displacement of the dam 

crest are presented in Fig. 6.  

 
Table 1 Comparison of the Dam crest displacement and natural frequency obtained by FEM and SEM 

Method FEM SEM 

Elements type 
Horizontal 

disp. (cm) 

Vertical 

disp.(cm) 
Natural 

Frequency (Hz) 
Horizontal 

disp.(cm) 

Vertical 

disp.(cm) 
Natural 

Frequency (Hz) 

Linear (N=1) 2.75 0.24 3.32 2.22 0.10 3.73 

Quadratic (N=2) 3.68 0.52 3.14 3.67 0.52 3.14 

 

 
Fig. 6 Comparison of the dam Crest displacement for dam only analysis 
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While good agreement between the results of both 

methods are achieved, less computational time are used by 

the SEM because of the diagonal mass and relatively more 

sparse stiffness matrix. It seems that for the large scale 

problems of the dynamic analysis of the structures such as 

dams, the SEM can be used as a good alternative to the 

FEM with ordinary mesh. Clearly the larger size of the 

structure is, the stronger SEM performs. 

5.3. Coupled dam-reservoir analysis 

The dam-reservoir discretized model which is used in 

the analysis is illustrated in Fig. 3. Reservoir bottom 

absorption has a significant effect on the peak values of the 

dam crest displacement and the hydrodynamic pressure of 

the reservoir [24]. To observe the effect of the reservoir 

bottom absorption on the seismic response of dam-reservoir 

system, the same model with two different absorption values 

in considered. The variation of the crest displacement and 

hydrodynamic pressure at the dam heel due to Taft 

earthquake are shown in Fig. 7. As illustrated in Fig. 8, the 

peak values of the displacement and hydrodynamic pressure 

are reduced considering the absorptive reservoir bottom 

with α=0.8. Therefore for more realistic condition, α=0.8 

has been used in all analysis. 

 

 
Fig. 7 Effect of the reservoir bottom absorption on the horizontal displacement at the dam crest (top) and hydrodynamic pressure at the dam 

heel (bottom) due to Taft earthquake 
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Fig. 8 Comparison of the reservoir mass (top) and stiffness (bottom) matrix sparsities in the FEM and SEM 

 

 

If the polynomial degree, N, is very high, greater than 

10, the SEM is especially very accurate, but the 

computational requirements become unreasonable because 

of the size of the calculations related to the matrix 

multiplications involving the full stiffness matrix. Another 

problem in the case of a high degree is that irregularly 

spaced GLL numerical integration points become clustered 

toward the edges of each spectral element. The spacing 

between the first two GLL points varies approximately as 

(   ), and as a result of the small distance between these 

first two points, very small time steps have to be used to 

keep the explicit time-marching scheme stable, which 

drastically increases the cost of the Legendre SEM. 

Therefore, the rule of thumb is that for most wave 

propagation applications, polynomial degrees between 

approximately 4 and 10 should be used in practice [9]. 

Table 2 indicates the maximum horizontal displacement of 

the dam crest and hydrodynamic pressure corresponding to 

the different Ns. It is indicated as in the case of the dam 

only, although for the low order elements, the SEM causes 

poor results, for the high order elements the SEM reaches 

to the accuracy of the FEM rapidly. No significant changes 

on the accuracy of the results are obtained for the 

polynomials of 4 degrees and higher. Therefore N=4 is 

used for different analysis of dam-reservoir system. It is 

important to mention that if we eliminate interior nodes of 

the elements and save the nodes along the edges of 

elements (serendipity type of elements), this is the same 

effect on the two methods and for simplicity, the elements 

with full nodes (Lagrangian type of elements) are used. 

 
Table 2 Maximum results of horizontal displacement at the dam crest and hydrodynamic pressure in the reservoir domain by FEM and SEM 

Method FEM SEM 

N      (   )      (  )      (   )      (  ) 

N=1 214 3.53 218 3.40 

N=2 237 4.32 232 4.16 

N=3 239 4.45 240 4.41 

N=4 240 4.48 240 4.46 

N=5 240 4.48 240 4.47 

N=6 240 4.48 240 4.47 

 

 [
 D

O
I:

 1
0.

22
06

8/
IJ

C
E

.1
3.

2.
14

8 
] 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

ce
.iu

st
.a

c.
ir

 o
n 

20
25

-0
7-

24
 ]

 

                             9 / 12

http://dx.doi.org/10.22068/IJCE.13.2.148
https://ijce.iust.ac.ir/article-1-808-en.html


R. Tarinejad, S. Pirboudaghi 157 

 

In the SEM, all the integrals in the form of ∫        

can be evaluated as exact diagonal matrices consequently 

consistent mass matrix of the reservoir is evaluated as an 

exact diagonal mass matrix. Since Kroncker delta is not 

work in the derivative of Lagrange polynomials, stiffness 

matrix is not diagonal in the SEM but it’s sparsity is more 

than which obtained by the FEM as shown in Fig. 8. 

All four boundary conditions in the reservoir domain 

have the form of mass matrix, (∫       ) and 

consequently evaluated by exact diagonal matrices by the 

SEM. For example matrix sparsity, corresponding to the 

reservoir bottom boundary condition, in both SEM and 

FEM is shown in Fig. 9. 

Finally seismic analysis of dam-reservoir interaction 

system is performed by FEM and SEM. The comparison 

of the horizontal and vertical dam crest displacement are 

shown in Fig. 10. The maximum hydrodynamic pressures 

in the reservoir domain are indicated in Fig. 11. Excellent 

agreement are found for the results obtained from both 

methods. 

In order to show the efficiency of the SEM relative to 

the FEM for dam-reservoir interaction problem, time 

consumptions of the analyses are compared for both 

methods with different order of the polynomials and 

presented in Fig. 12. The results shows that for the low 

order polynomials (N<=2) no considerable difference for 

time consumption of the analysis is obtained. For higher 

order polynomials (N>=3) a significant less CPU time 

(e.g. 1/6 for N=6) is obtained for the SEM in comparison 

with the FEM. The diagonal mass and mass type matrices 

are very significant advantages of the Legendre spectral 

element method, using Lagrange interpolation in 

combination with the GLL quadrature, over classical FEM 

and consequently lead to a significant reduction in 

complexity of iterative methods. Besides, the more sparse 

stiffness matrix of the SEM allows a dramatic decrease for 

construction and storage requirements rather than the 

FEM. On the other hand higher order FEM with Lagrange 

polynomials induces more parasite terms with 

substantially increases the convergence time. This is a big 

advantage of the SEM over the FEM especially for the 

higher order elements of the large scale systems. 

 

 
Fig. 9 Comparison of the reservoir bottom damping matrix 

sparsity in the FEM (top) and SEM (bottom) 

 

 

 
Fig. 10 Comparison of the horizontal displacement at the dam crest considering the reservoir interaction effect 
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Fig. 11 Comparison of the maximum hydrodynamic pressure in the reservoir domain 

 

 
Fig. 12 Comparison of the CPU time for the FEM and SEM 

 

6. Conclusion 

The dam–reservoir interaction problem was studied in 

the time domain by FEM and SEM. A special code was 

developed to carry out the dynamic analysis of the system 

by using two-dimensional elements. In order to verify the 

accuracy of the developed code comparison of the 

obtained results and previous researches were performed 

and good agreements were obtained. For lower order 

elements, the SEM causes poor results in comparison with 

the FEM. Spectral convergence causes the SEM results 

converge to the FEM rapidly by increasing the degree of 

interpolation polynomials. The results indicate that for 

higher order elements the SEM is better alternative in the 

seismic analysis of the dam-reservoir interaction rather 

than the FEM because of the following reasons. (1) In the 

SEM all boundary conditions of the reservoir domain are 

evaluated by the exact diagonal matrices. (2) Diagonal 

mass matrices are obtained for both the dam and reservoir 

domains in the SEM. (3) Stiffness matrices of both the 

dam and reservoir systems are more sparse in the SEM 
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than FEM. (4) Less significant time consumption of the 

analysis were obtained in the SEM for higher order 

elements especially for the large scale systems (such as 

dam-reservoir) in comparison with the FEM.  
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