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Abstract 

The effect of axial deformation of shell particles on the dynamic instability (flutter) of cantilevered cylindrical shells made 

of functionally graded materials (FGM) under an end axial follower force is addressed. To this end, at first, results for free 

vibration of FGM cylindrical shells were verified with previous outcomes and they were in very good agreement. Then, the 

effect of axial deformation of the shell, acting like a reducing linearly-distributed follower load, on the critical circumferential 

mode number and the flutter load of FGM shells was accounted for. Finally, the effect of axial deformation of the shell 

particles on the critical circumferential mode number and the flutter load of FGM shells were investigated. In this case, three 

homogeneous shells with different elasticity moduli and densities and two FGM materials were considered: nickel-stainless 

steel and stainless steel-alumina. Results include the increasing critical circumferential mode number and the increasing value 

of the flutter load due to axial deformation. The increase in the flutter load occurs in proportion to the whole elasticity 

modulus of the material, and thus it can be derived from the formula of mixture for an FGM. 

Keywords: Flutter, Follower force, Functionally graded material (FGM), Power parameter, Axial deformation. 

 

1. Introduction 

In recent years, Functionally-Graded Materials (FGM) 

have received wide applications in engineering mechanics 

since laminated composites can encounter delamination 

when undergoing great mechanical or temperature loads 

due to different deformation fields occurring in different 

layers which lead to inter-layer stresses. Thus, in order to 

control the mechanical properties including the amounts 

and localities of temperature stresses, yielding and 

ultimate strengths, and crack stimuli and zones, FGM 

materials are generally preferable to laminated composites 

[1]. Of the most notable applications of FGM is in air-

plane landing gears, reservoirs containing chemical, 

radioactive, or plasma settings, high-speed aircrafts 

(including skin structures such as fuselages), propulsion 

systems in air planes, cutting instruments, incinerators, 

heat exchangers, turbine blades, etc. [2-7]. 

A follower force is a non-conservative destabilizing 

force which changes direction in parallel to the rotation of 

its application point. 
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By its very nature, it mostly applies to axially loaded 

structures. Hence, the use of stiffening elements proves 

significantly effective in delaying instability (This will 

pose an interesting subject for future work in this respect 

since the effect of stiffening elements on flutter of FGM 

structures has not been reported as investigated) [8-10]. 

Flutter is known as dynamic instability occurring with 

infinite frequency of the structure body. The most well-

known problem in flutter of cantilever structures is Beck’s 

problem, in which a concentrated follower force is applied 

at the free end of a cantilever. Practical applications of this 

problem include the thrust applied on the end of a 

projectile or missile by a rocket, the thrust applied on the 

body of aircraft structures by a jet engine, gas turbine 

rotors, the gripping force in disk brakes, the eccentric load 

exerted on a platform by a tip mass, etc. [8-10]. 

Research works about flutter of homogeneous 

cylindrical shells under follower forces abound. Altman 

and De Oliviera studied the dynamic stability of cantilever 

cylindrical and conical panels with and without slight 

internal damping. They asserted that due to numerical 

defects, the critical load calculated becomes occasionally 

very small. To overcome this problem, a slight damping 

matrix proportional to the stiffness matrix can be used in 

the solution [11, 12]. Dynamic stability of thin cylindrical 

panels with different boundary conditions under 

concentrated and distributed follower forces was firstly 

studied by Bismark Nasr using the finite element method 

with C
1
 continuity [13]. The dynamic stability of free-free 

cylindrical shells under end follower forces was studied by 
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Park and Kim [14]. They used the finite element method 

with the First-order Shear Theory (FST) theory. They 

extracted the critical loads, critical sequential modes, and 

critical circumferential mode numbers for different length-

to-radius (L/R) and thickness-to-radius (h/R) ratios. They 

concluded that FST is valid only for 20L R  , and for

40L R   the cylindrical shell can be analyzed with the 

beam theory in certain regions of h/R. The same problem 

for cantilever cylindrical shells was studied by Torki et al. 

[15]. They modified the static part of the axial deformation 

of a free-free shell into that of a cantilever shell and 

verified the obtained flutter load for a cantilever shell with 

that of a long free-free shell, for which the results were in 

good agreement. They calculated the increased flutter load 

due to considering the effect of axial deformation for 

different values of L/R and h/R ratios. 

Flutter of FGM materials has been studied by many 

researchers. Prakash and Ganapathi and Sohn and Kim 

studied the stability problem in plane panels, Navazi and 

Haddadpour studied the problem in plates, and 

Haddadpour et al. considered the problem in cylindrical 

shells, and Ebrahim et al. solved the problem in nonlinear 

regions for temperature loads [16, 17]. Haddadpour et al. 

studied flutter of FGM plates under supersonic air flows 

by using the Classic Plate Theory (CST) and considering 

the von Karman nonlinearity.  

They used the Galerkin method with 6 longitudinal 

modes for convergence, and discovered that the maximum 

flutter threshold occurs due to a specific power parameter 

between zero and infinity [18]. Haddadpour et al. assessed 

the supersonic flutter problem of FGM cylindrical shells 

by using Love’s hypotheses and the von Karman nonlinear 

effect to derive the differential equations and using the 

first Piston theory to calculate the follower force exerted 

by air.  

They used the Galerkin method with polynomial mode 

shapes to solve the equation systems, and used a polynomial 

function for the temperature distribution along the thickness. 

They concluded that the effect of temperature is so rigorous 

that the flutter load declines to zero for some temperatures 

near the buckling temperature [19]. 

Although there is a large cache of work concerning the 

flutter of homogeneous cylindrical shells under follower 

forces, to the best of the authors' knowledge, it seems that 

work on the corresponding problem for FGM shells is 

meager. Thus, the dynamic stability of FGM cylindrical 

shells under follower forces will be discussed in the sequel. 

For this purpose, Love’s hypotheses are used to derive the 

differential equations of motion, and the extended Galerkin 

method is used to solve the equation systems.  

The problem is solved for three homogeneous (nickel, 

stainless steel, and alumina) and two FGM materials 

(nickel-stainless steel and stainless steel-alumina). 

Results include the effect of density and the power 

parameter on the critical circumferential mode number 

and the minimum flutter load, in the case of considering 

the axial deformation, in different ranges of the shell 

thickness and length. 

2. Theoretical Formulation 

2.1. Displacement field and strains 

Consider a cylindrical shell with radius R, thickness h, 

and length L. In case that the coordinate system is taken to 

be as shown in Fig. 1a, then using FST, the deformation 

components of any point can be written as [20]: 
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(1) 

 

where u0, v0, and w0 are the displacement components of 

the middle surface and x and  are changes in the slope 

of the normal to the middle surface around θ and x axes, 

respectively. The strain resultants per unit length for a 

cylindrical shell are shown in Fig. (1b). 

For the strain components, Love’s hypotheses are used. 

These hypotheses express the following [20]: 

The transverse normal is inextensible. 

Normals to the reference surface of the shell before 

deformation remain straight, but not necessarily normal, 

after deformation. 

Deflections and strains are infinitesimal. 

The transverse normal stress is negligible (plane-stress 

state is invoked). 

Using Eq. (1) and by considering Love’s hypotheses 

expressed above, the strain tensor elements can be written 

as follows [20]: 
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where the superscripted components are defined as: 
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(3) 

 

In a FGM material, the effective mechanical properties 

including elasticity modulus and Poisson’s ratio, and 

physical parameters such as the density, thermal 

elongation coefficient, and thermal conductivity can be 

obtained using Eq. 4, known as the mixture law [21]: 
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(a) (b) 

Fig. 1 (a) The coordinate system, (b) strain resultants considered for cylindrical shells [20] 

 

 

where Feff is the effective mechanical or physical 

property in the cross section, Fm and Fc are the 

corresponding parameters for the metal and ceramic 

phases, respectively, and Vi is the volume fraction, either 

for the metal (m) or ceramic (c) phase. The metal phase 

has greater elasticity modulus and lower density and 

Poisson’s ratio, and the ceramic phase has less elasticity 

modulus and larger density and Poisson’s ratio [24]. N, i.e. 

the power parameter, denotes the mathematical shape 

according to which the two phases change towards each 

other. When N equals unity, one phase approaches the 

other in a linear manner, and the effective property Feff at 

the origin ( 0z  ) is the average of the corresponding 

properties for metal (Fm) and ceramic (Fc) phases. Figure 2 

shows the outline of Vm against N. In the case the volume 

fraction is defined according to Eq. 4, the whole FGM 

elasticity modulus increases while its density decreases 

with N. In this case, the ceramic and metal phases are 

placed in the interior and exterior of the cross section, 

respectively, as depicted in Fig. 3.   

 

 

 

 
 

 

 

 

 
Fig. 2 Outline of Vm against the power parameter N. 

 

 
Fig. 3 FGM cylindrical section defined using Eq. 4. 

 

The properties of FGM materials are temperature-

dependent. Thus, the properties of each phase, including 

elasticity modulus, density, Poisson’s ratio, etc. ought to 

be calculated in terms of temperature. Assuming that the 

so-called property is shown with F, the thermo-mechanical 

coupling effect of temperature T (by Kelvin) can be 

written as [21]: 

 

(5) 
 1 2 3

0 1 1 2 31

: , , ,  for metal and ceramic

i

i

F F F T FT F T F T

F E   



    
 

 

where the temperature coefficients can be obtained 

from Tables 1 and 2 for elasticity modulus and Poisson’s 

ratio, respectively [21]. 

In the present research, the temperature has been assumed 

to be constantly equal to the base temperature, i.e. 300 K. 

In this case, the elasticity moduli of nickel, stainless steel, 

and alumina will be obtained 2.051×10
11

, 2.07788×10
11

, 

and 3.20235×10
11

 Pa, respectively and no extra stresses 

will be developed due to temperature change. Likewise, 

the Poisson’s ratios of nickel, stainless steel, and alumina 

will be 0.31, 0.3176, and 0.26, respectively. Finally, 

according to the existent literature, the density of nickel, 

stainless steel, and alumina are 8900, 8166, and 4000 

kg/m
3
, respectively [22]. 
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Table 1 Temperature coefficients in Eq. 5 for elasticity modulus (Pa) [21] 

3F 
2F 

1F 
1F-

 
0F Material 

-3.681×10
-10

 1.214×10
-6

 -1.371×10
-3 

0 244.27×10
9 

Zirconia 

-1.673×10
-10

 4.027×10
-7

 -3.853×10
-4 

0 349.55×10
9 

Alumina 

-8.946×10
-11

 2.160×10
-7

 -3.070×10
-4 

0 348.43×10
9 

Silicon nitride 

0 0 -4.586×10
-4 

0 122.56×10
9 6 4Ti Al V  

0 -6.534×10
-7

 3.079×10
-4 

0 201.04×10
9 

Stainless steel 

0 -3.998×10
-9

 -2.794×10
-4 

0 223.95×10
9 

Nickel 

 

 
Table 2 Temperature coefficients in Eq. 5 for Poisson’s ratio [21] 

3F 
2F 

1F 
1F-

 
0F Material 

0 0 1.133×10
-4 

0 0.288
 

Zirconia 

0 0 0
 

0 0.260
 

Alumina 

0 0 0
 

0 0.240
 

Silicon nitride 

0 0 1.121×10
-4 

0 0.288
 6 4Ti Al V  

0 3.797×10
-7

 -2.002×10
-4 

0 0.326
 

Stainless steel 

0 0 0
 

0 0.310
 

Nickel 

 

 

The stress resultant vectors in unit length (of the shell 

circumference), {N}, {M}, and {Q} for FGM can be 

obtained in terms of strain components using the ABD 

matrix as [20]: 
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where the components are defined as: 
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(7) 

 

 

where Ks is the shear correction factor, which is
2 12 for cylindrical shells [2], and υ is Poisson’s 

ratio. ( )E z , ( )z , and ( )z must be determined using 

Eq. 4 or 5. However, since the Poisson’s ratios of the 

two phases are not far different, ( )z can be taken equal 

for the two phases, i.e. constant for the whole thickness 

[23]. 

 

2.2. Equations of motion 

In order to derive the governing equations of motion, 

Hamilton’s principle is used as [20]: 

 

 
0

0

T

ncK U W dt      (8) 

where δK and δU are variations of kinetic energy and 

strain energy, respectively, defined as: 
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(9) 

 

 

where the dot superscript shows differentiation with 

respect to time. δWnc is variation of the work done by non-

conservative forces. Since, as known, follower forces are 

non-conservative, δWnc for a cantilevered cylindrical shell 

can be written as [15]: 

 

 

(10) 

2 2

2 2

0 0

( ) ( ) ( ) ( )
nc

v v w w
δw P x P x dx δv P x P x dx δw

x xx x

         
           

           
 
l l

 

 

 

where 2P P R is the force per unit length of the 

shell circumference, on the premise that the axial stress is 

uniformly distributed along the thickness. Fig. 4 includes 

the scheme of Beck's follower loading. 

 

 
Fig. 4 Schematic shape of follower loading in Beck’s problem 

 

 

In order to derive the equations of motion correctly, an 

additional constraint equation must be added to δU as 

follows [20]: 

 

x
x x n

M
N N Rdxd

R


   

 
  

 
   (11) 

 

where n denotes the rotation about the transverse 

normal to the shell surface. For thin shells,

,x x x xM M N N     . Since the mode shapes used in 

the present research do not satisfy the natural boundary 

conditions, the boundary equations have been added to the 

domain equations. After replacing the stress resultants by 

their strain equivalents from Eq. (6) and replacing strain 

components in terms of deformations from Eq. (2), the 

following differential operators will be derived: 
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where L and L  matrices are differential operators of 

the domain and boundary, respectively, whose elements 

are defined in Appendix A. 

3. Solution Method 

It can be proved that all of the equations are orthogonal 

in terms of θ if the displacements are defined using 

alternative sine and cosine functions as stated in Eq. (16). 

Thus, we can choose base functions and mode shape 

functions as follows: 
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The superscripts denote functions corresponding to 0u , 

…, and  , and
i

ja ( 1 5i  .. ) are the unknown coefficients 

that could be determined by exerting any approximation 

method such as Galerkin’s method. For the mode shape 

functions, ( )i

j x ( 1 5i  .. ) that satisfy the essential 

boundary conditions of the cantilevered cylinder, the 

following polynomials have been taken [11, 24]: 

 
3

1 2 3 1 4 5 3,  ,  ,  
jj j

j j j j j j

d
x x

dx


           (14) 

 

After application of Galerkin’s method, stiffness and 

mass matrices can be defined as functions of 

circumferential mode number, n, and power parameter, N. 

The stiffness matrix is also a function of P . The 

equations obtained by the application of the so-called 

generalized Galerkin method are algebraic equations in 

terms of i

ja ( 1 5i  .. ). Setting the determinant of the 

coefficient matrix to zero to impose the condition of non-

trivial solution, as stated in Eq. (15), ω will be obtained. 

 

 2det 0
P,n N n N

ω 
( , ) ( , )

K M  (15) 

 

where ω is a complex number with a zero real part 

until the shell loses its stability under the applied follower 

forces. As soon as instability occurs, the real part begins to 

become positive or negative. In order to facilitate 

verification for future works, the non-dimensional load 

parameter βs for the shell model can be considered as the 

comparator, defined as follows [14]: 

 
21

s

ν
β P

Eh




 
(16) 

4. Results and Discussion 

Calculations in the present study demonstrated the 

optimum number of terms needed for convergence in the 

Galerkin method is 6, which is confirmed in Ref. [11]. 

Subsection 4.1 includes verification of results with 

previous works. When the imaginary part of the natural 

frequency (ω) of two sequential modes becomes zero and 

the real part gets greater than zero, divergence occurs. 

Alternatively, when the imaginary part of the natural 

frequency of two sequential modes becomes equal and the 

real part gets greater than zero, flutter occurs. Results 

demonstrated that instability under follower forces can be 

flutter or divergence. However, flutter always takes place 

before divergence. 

4.1. Free Vibration of FGM shells 

The minimum natural frequency (pertaining to the first 

mode) vs. the circumferential mode number for a stainless 

steel- nickel FGM shell with the following properties is 

shown in Fig. 5. In this case, the metal and ceramic phases 

have been taken to be stainless steel and nickel, respectively. 

The results were verified with those of Ref. [24]. 

 

 
Fig. 5 Minimum natural frequency vs. the circumferential mode 

number for a cantilevered cylindrical FGM shell 

4.2. Effect of axial deformation on flutter of cantilevered 

FGM cylindrical shells 

The results in this section include the effect of axial 

deformation on the critical circumferential mode number 

and the critical (flutter) load. In order to evaluate the 

effects of elasticity modulus and power parameter in the 

case of considering axial deformation separately, the 

results have been calculated for homogeneous shells with 

different materials and for FGM materials of two 

constitutions: nickel-stainless steel and stainless steel-

alumina. 

4.2.1. Effect on the critical circumferential mode number 

The effect of axial deformation on the critical 

circumferential mode number (ncr) for homogeneous 

materials with different elasticity moduli is illustrated in 

Tables 3-5. 

 
Table 3 Effect of axial deformation on ncr for nickel (Ni) 

h/R 
10L R   20L R   40L R   60L R   80L R   100L R   

B
† C

†† B C B C B C B C B C 

0.01 5 5 4 4 3 3 3 3 2 2 2 2 

0.03 3 3 3 3 2 2 2 2 2 2 2 2 

0.05 3 3 2 2 2 2 2 2 2 2 1 1 

0.075 3 3 2 2 2 2 1 1 1 1 1 1 

0.1 2 2 2 2 2 2 1 1 1 1 1 1 
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0.125 2 2 2 2 1 1 1 1 1 1 1 1 

0.15 2 2 2 2 1 1 1 1 1 1 1 1 

0.175 2 2 2 2 1 1 1 1 1 1 1 1 

0.2 2 2 2 2 1 1 1 1 1 1 1 1 

 
Table 4 Effect of axial deformation on ncr for stainless steel (Fe) 

h/R 
10L R   20L R   40L R   60L R   80L R   100L R   

B C B C B C B C B C B C 

0.01 5 5 4 4 3 3 3 3 2 2 2 2 

0.03 3 3 3 3 2 2 2 2 2 2 2 1 

0.05 3 3 2 2 2 2 2 2 2 2 1 1 

0.075 3 3 2 2 2 2 2 2 1 1 1 1 

0.1 2 2 2 2 2 2 1 1 1 1 1 1 

0.125 2 2 2 2 1 1 1 1 1 1 1 1 

0.15 2 2 2 2 1 1 1 1 1 1 1 1 

0.175 2 2 2 2 1 1 1 1 1 1 1 1 

0.2 2 2 2 2 1 1 1 1 1 1 1 1 

 
Table 5 Effect of axial deformation on ncr for alumina (Al2O3) 

h/R 
10L R   20L R   40L R   60L R   80L R   100L R   

B C B C B C B C B C B C 

0.01 5 5 5 4 4 3 4 3 3 2 3 2 

0.03 3 3 3 3 2 2 2 2 2 2 2 2 

0.05 3 3 3 2 2 2 2 2 2 2 1 1 

0.075 3 3 3 2 2 2 2 2 2 2 1 1 

0.1 3 2 2 2 2 2 2 1 1 1 1 1 

0.125 3 2 2 2 2 1 1 1 1 1 1 1 

0.15 2 2 2 2 2 1 1 1 1 1 1 1 

0.175 2 2 2 2 1 1 1 1 1 1 1 1 

0.2 2 2 2 2 1 1 1 1 1 1 1 1 

†: Beck's problem; ††: Combined-effect problem (considering the axial deformation) 

 

Moreover, the same effect on ncr of nickel-stainless 

steel and stainless steel-alumina FGM materials with the 

power parameter N=1 is included in Tables 6 and 7, 

respectively. The effect of axial deformation on ncr for 

power parameters between 0 and 1 are like the 

corresponding effect for N=0, and the same effect for 

power parameters between 1 and ∞ are similar to the 

corresponding effect for N=∞ (with very slight cases of 

difference occurring due to calculation errors). For this 

reason, ncr values for intermediary power parameters have 

been disregarded for the sake of convenience. 

It can be observed from Tables 3-7 that: 

The combined-effect ncr is, in all cases, less or equal to 

ncr of ordinary Beck's problem. However, this effect does 

not influence ncr remarkably. 

The effect of considering axial deformation is the 

utmost in alumina and the least in nickel (in which ncr does 

not change at all). Furthermore, the change in in FGM 

materials occurs between those in the two base phases. 

Thus, the so-called effect is proportional to the overall 

elasticity modulus of the cross section. 

 
Table 6 Effect of axial deformation on ncr for ‘Ni-Fe’ FGM with N=1 

h/R 
10L R   20L R   40L R   60L R   80L R   100L R   

B C B C B C B C B C B C 

0.01 5 5 4 4 3 3 3 3 2 2 2 2 

0.03 3 3 3 3 2 2 2 2 2 2 2 2 

0.05 3 3 2 2 2 2 2 2 2 2 2 2 

0.075 2 2 2 2 2 2 2 2 1 1 1 1 

0.1 2 2 2 2 2 2 1 1 1 1 1 1 

0.125 2 2 2 2 1 1 1 1 1 1 1 1 

0.15 2 2 2 2 1 1 1 1 1 1 1 1 

0.175 2 2 2 2 1 1 1 1 1 1 1 1 

0.2 2 2 1 1 1 1 1 1 1 1 1 1 
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Table 7. Effect of axial deformation on ncr for ‘Fe-Al2O3’ FGM with N=1 

h/R 
10L R   20L R   40L R   60L R   80L R   100L R   

B C B C B C B C B C B C 

0.01 5 5 4 4 3 3 3 3 2 2 2 2 

0.03 3 3 2 2 2 2 2 2 2 2 2 2 

0.05 2 2 2 2 2 2 2 2 1 1 1 1 

0.075 2 2 2 2 1 1 1 1 1 1 1 1 

0.1 2 2 2 2 1 1 1 1 1 1 1 1 

0.125 2 2 1 1 1 1 1 1 1 1 1 1 

0.15 2 2 1 1 1 1 1 1 1 1 1 1 

0.175 1 1 1 1 1 1 1 1 1 1 1 1 

0.2 1 1 1 1 1 1 1 1 1 1 1 1 

 

4.2.2. Effect on the flutter load 

The effect of axial deformation on the non-

dimensional flutter load (βscr) for homogeneous 

materials with different elasticity moduli is illustrated 

in Tables 8-10, where ηC is the ratio of the combined-

effect βscr to the ordinary Beck's βscr. 

 
Table 8 Values of ηC due to the effect of axial deformation for nickel 

L 

h 
10 20 40 60 80 100 

0.01 1.19 1.20 1.20 1.18 1.18 1.18 

0.03 1.22 1.19 1.19 1.19 1.18 1.17 

0.05 1.18 1.19 1.20 1.17 1.16 1.15 

0.075 1.18 1.21 1.17 1.16 1.17 1.17 

0.1 1.23 1.19 1.17 1.17 1.17 1.17 

0.125 1.19 1.19 1.17 1.17 1.17 1.17 

0.15 1.18 1.19 1.17 1.17 1.17 1.17 

0.175 1.19 1.19 1.17 1.17 1.17 1.17 

0.2 1.19 1.19 1.17 1.17 1.17 1.17 

 
Table 9 Values of ηC for stainless steel 

L 

h 
10 20 40 60 80 100 

0.01 1.24 1.24 1.23 1.23 1.17 1.18 

0.03 1.25 1.22 1.22 1.22 1.22 1.22 

0.05 1.22 1.22 1.22 1.20 1.18 1.17 

0.075 1.22 1.24 1.20 1.17 1.17 1.17 

0.1 1.23 1.23 1.19 1.17 1.17 1.17 

0.125 1.25 1.21 1.17 1.17 1.17 1.17 

0.15 1.22 1.21 1.17 1.17 1.17 1.17 

0.175 1.21 1.21 1.17 1.17 1.17 1.17 

0.2 1.21 1.21 1.17 1.17 1.17 1.17 

 
Table 10 Values of ηC for alumina 

L 

h 
10 20 40 60 80 100 

0.01 1.16 1.19 1.21 1.25 1.28 1.24 

0.03 1.19 1.19 1.19 1.19 1.16 1.15 

0.05 1.19 1.49 1.78 1.78 1.76 1.55 

0.075 1.50 1.78 1.78 1.76 1.76 1.17 

0.1 1.71 1.80 1.78 1.19 1.17 1.17 

0.125 1.65 1.80 1.55 1.17 1.17 1.17 

0.15 1.70 1.80 1.19 1.17 1.17 1.17 

0.175 1.79 1.81 1.17 1.17 1.17 1.17 

0.2 1.79 1.82 1.17 1.17 1.17 1.17 
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Moreover, the same effect on βscr of nickel-stainless 

steel and stainless steel-alumina FGM materials with

0.1h R   is shown in Figs 6 and 7, respectively. Diagrams 

for more intermediary power parameters have been 

disregarded for more clarity of figures. 

As it can be seen in Tables 8-10 and Figs 6 and 7: 

 

 
Fig. 6 Values of ηC for the nickel-stainless steel FGM with 

h/R=0.1 

 

 
Fig. 7 Values of ηC for the stainless steel-alumina FGM with 

h/R=0.1 

 

The axial deformation of the shell increases the flutter 

load to a limited extent. Namely, neglecting this effect 

overestimates the flutter load.  

The axial deformation invariably reduces with L/R in 

FGMs where the elasticity moduli of the two phases are 

close, as for nickel-stainless steel. However, it has a 

maximum point in FGMs where the elasticity moduli of 

the two phases are far different, as for stainless steel-

alumina. The maximum effect, i.e. the maximum value of 

ηC occurs in the range 20 40L R  , most probably in

30L R  . 

As the shell becomes very long and moderately thick, 

i.e. in beam-like ranges, ηC becomes almost constantly 

equal to 1.17 for all lengths and thicknesses. 

The effect of axial deformation on the flutter load is 

proportional to the elasticity modulus of the whole cross 

section. Therefore, especially in thick, moderately-long 

shells, ηC is maximum in alumina, minimum in nickel, and 

approximately the average in both FGM shells with N=1. 

It could be estimated from Figs 6 and 7 that ηC in an 

FGM shell can be approximately obtained with Eq. 4, 

whence ηC for a specific N is obtained by placing ηC 

instead of F and letting 0z  . Thus, it can be written that: 

 

     
1

, , ,  : ,
2

N

Eff m c m c c LB HBN        
 

   
 

 
(17) 

 

For instance, the values of ηC, obtained from Eq. 4 and 

directly calculated from the program, are depicted in Fig. 8 

for 2N  . Similar agreement was observed between the 

two methods for other power parameters. The zero and 

infinity power parameters are excluded because they refer 

to the very base phases made of different materials, and 

thus the values of ηC for these base phases have to be 

directly calculated. However, for a composite FGM 

consisting of the two base materials mixed according to 

the power mixture law, the same effect need not be 

calculated with discrete calculation. 

 

 
Fig. 8 Comparison between the values of ηC obtained using Eq. 

17 and calculated directly for FGMs with N=2 

5. Conclusions 

The present study deals with the effect of considering 

the axial deformation of cantilevered cylindrical shells 

made of FGM materials on the dynamic instability, i.e. 

flutter under an axial follower force (Beck’s loading).  

First-order shear deformation was considered to derive 

differential equations, and Galerkin’s method was applied 

using six longitudinal modes. Results included the effect 

of axial deformation (combined effect) on the critical 

circumferential mode number (ncr) and non-dimensional 

flutter load (βscr), which were deduced as follows: 

L/R
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- The combined-effect ncr is less or equal to ncr of 

ordinary Beck's problem. 

- The axial deformation effect is proportional to the 

overall elasticity modulus of the cross section. 

- The axial deformation of the shell increases the flutter 

load to a limited extent.  

- The axial deformation effect is more significant in 

moderately-long, thick shells. 

- In beam-like ranges, the combined-effect βscr is almost 

constantly equal to 1.17 times the Beck’s-loading βscr 

for all lengths and thicknesses. 

- The effect of axial deformation on the flutter load is 

proportional to the elasticity modulus of the whole 

cross section, both in homogeneous and FGM shells. 

For a power parameter other than zero and infinity, the 

effect of axial deformation can be obtained, without 

discrete computation, using the mixture formula of the 

FGM, knowing the corresponding values for the two 

phases. 

Appendix A 
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