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Abstract

Latticed columns are frequently used in industrial steel structures. In some countries these built-up columns might be even
used in other types of steel structures such as residential and commercial buildings. Besides, latticed columns are parts of
skeletons of many historic buildings all around the world. To analyze a steel structure with latticed columns a more accurate
numerical model for such a column seems to be essential. The lay-out and connectivity of constructing main profiles of a
latticed column leads to formation of many shear zones along the length of a column. Therefore, considering shear effects on
the behavior of a lattice column is inevitable. This paper proposed a new super-element with twelve degrees of freedom to be
used in finite element modeling of latticed columns. The cross sectional area, moments of inertia, shear coefficient and
torsional rigidity of the developed new element are derived. To compute these parameters with less complexity a model using
only beam elements is also introduced. A general purpose finite element program named LaCE is developed. This FE program
is capable of performing linear and nonlinear analysis of 3D-frames with latticed columns, considering shear deformation. To
show the accuracy of the proposed element, several cases are studied. The outcome of these investigations revealed that the
current-in-practice model for latticed columns suffers from some major shortcomings which to some extends are resolved by
the proposed super-element. The developed element showed the capability of modeling a lattice column with good accuracy
and less computational cost.

Keywords: Finite element, Super-element, Latticed column, Shear deformation, Torsional rigidity, Nonlinear analysis,

Stiffness reduction.

1. Introduction

Latticed columns used to be the most dominant type of
columns during nineteen and early twentieth century [1].
These columns have been serving as the pillars of many
historic buildings and monuments all around the world for
many years. Due to historical values, these buildings must
be preserved. For maintaining, health monitoring and
retrofitting of a historic building, an extensive structural
analysis is inevitable. To the best knowledge of the
authors, hardly an appropriate and convenient numerical
model for analyzing a structure with some latticed
columns is at our disposal. In such columns, the effect of
the stiffness reduction due to shear deformations is
significant and must be included in any analytical or
numerical solution. Ignoring this effect could be very
serious and might lead to collapse of buildings which are
designed without considering this vital effect, especially
during an earthquake.

Nowadays latticed columns are basically used in
industrial structures. Besides, in some countries mostly in
Asia, it is a common practice to use this type of columns in
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commercial and residential buildings with steel structures.
Despite of its abundant uses, there is no extensive
literature on this subject. The current research on the
latticed columns has mainly focused on the derivation of
critical loads for these columns [2-12]. Here we briefly
address some of these methods.

In 1970 Fung et al [2] calculated the critical load of
some latticed columns by introducing, a dimensionless
parameter which was considered to include the shear
effect. This parameter contained the effect of axial force,
eccentricity of local diagonal members and extra stiffness
due to the connections of the batten plates to the main
profiles. The effects of end plates on the critical load as
well as on the coefficients of slope-deflection equations
were studied and graphically presented. Bruce in 1971 [3]
studied the effects of end plates on critical loads. He
effectively showed that end plates played an important role
on the buckling strength of the latticed columns. Elastic
and plastic analysis of latticed columns was the subject of
a research conducted by Zhaomin and Zhikang in 1984
[4]. In 1990, a fundamental theoretical method was
presented by Gjelsvik [5]. This method was based on
simulating the open web of a latticed column by a
continuous web with only shear stiffness. The effects of
end plates on the magnitudes of the critical load were also
studied. He constructed his theory on the following
kinematic assumptions. (i) Each main profile behaves as a
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simple beam; (ii) the shear deformation within each main
profile is negligible; (iii) the transverse displacements of
both main profiles are the same (the web is transversely
rigid); (iv) the web behaves as a shear panel which is
continuously connected to the main profiles. By using this
model the order of the governing differential equations
changed from four to six. Gjelsvic obtained the critical
load by solving the new governing equation. It is worthy
of mention that the Euler theory, the Engesser theory and
the spaced column theory are all special cases of his
theory. In 1995, Pual [6] arranged a theoretical and
experimental research to calculate critical loads of the
latticed columns. The basic method and assumptions in his
research were the same as those had been described by
Gjelsvik [5] except that he assumed the replaced web
would behave as a Timoshenko shear beam. In another
research that was conducted by Pual in the same year, he
assumed that the replaced web could carry bending, shear
and axial forces. Besides, the effects of end plates on the
critical load were considered. The obtained results were
compared with the results from the Euler, Engesser and
spaced column theories [7]. Li and Li in 2004 [8] proposed
a generalized finite element for buckling analysis of
tapered columns. They used Chebyshev polynomial
approach and studied the effect of shear deformation on
the buckling capacity of lattice columns. In 2010
Mijailovic [9] tried to optimize of lattice columns by
considering buckling and deformation criteria as the
constraints functions. He computed the optimization
parameters by Lagrange’s multipliers method. Razdolosky
[10, 11] investigated the flexural buckling and slenderness
ratio of laced columns. Finally, Jiang et al in 2011 [12]
used both numerical methods and experimental results for
studying ultimate load capacity of a special type of latticed
columns.

1.1. The Proposed super-element

By reviewing the literature on the subject of latticed
columns, one might notice that existing analytical and
numerical models for studying the behavior of this type of
columns specially subjected to seismic loads are not be
very appropriate. To narrow the gap between the analytical
results from the customary modeling of latticed columns
and the actual behavior of these columns, developing a
new numerical element could be constructive.

In order to be able to calibrate the results of our
proposed element with the experimental data a vast
investigation was performed. But no experimental results
regarding the general behavior of a latticed column was
available. Therefore, in this paper the actual behavior of a
lattice column will be simulated by the behavior of a
reference model. The reference model is a 3-D latticed
column constructed by wusing 3-D solid elements
introduced in SAP2000. To examine the performance of
the proposed model, the results obtained from the
developed model must be compared with the results from
the reference model. The behavior of the reference model
will also been compared with the behavior of the current
customary model. The current model is a column which is
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defined by an individual steel section with the following
equivalent parameters. (i) the cross-sectional area is equal
to the total cross-sectional areas of both main profiles; (ii)
the torsional rigidity is equal to the total torsional rigidities
of both main profiles; (iii) the moment of inertia for
bending in the plane perpendicular to the batten plates is
equal to total moments of inertia of both main profiles; (iv)
the moment of inertia for bending in the plane of batten
plates is equal to the moments of inertia of both main
profiles about the central axis perpendicular to the batten
plates. One must notice that the current model neglects the
effects of the panel shear deformations of the latticed
column. By comparing the results from the reference
model with the results from the current model, some
equivalent parameters for the current model such as the
equivalent cross-sectional area and moment of inertia in
the plane perpendicular to batten plates could be derived.
Then these parameters are employed to develop the
stiffness matrix of the super element. Other proposed
equivalent parameters of the super element have been
modified to consider the panel shear deformations of the
latticed column. Some formulas have been proposed to
calculate the equivalent cross-sectional area, the equivalent
moment of inertia and the shear factor for bending in the
plane perpendicular to the batten plates and the equivalent
torsional rigidity. To calculate these parameters, a model
has been constructed by using only beam elements. To
consider the effects of batten plates and end plates, a
procedure is proposed.

By using this developed model, it is expected to obtain
a good approximation of the actual behavior of a latticed
column with a considerable reduction in the number of
degrees of freedom which used in the reference model. At
the end, the stiffness matrix of the super element, a 12 by
12 matrix in 3-D, has been developed by using the
proposed equivalent parameters.

2. Modeling and Examining the Latticed Columns
Behavior

To examine the behavior of a latticed column, a few
models of this type of columns are constructed in 3-D
space by using a large number of solid elements. The main
profiles which have been chosen ranged from IPE140 to
IPE270. In order to calculate the elements of the stiffness
matrix of the proposed super-element, one end of the
latticed column has been considered to be fixed and a rigid
plate has been connected to the other end. Then, each time,
only one of the end degrees of freedom has been released.
By applying a force in the direction of the released degree
of freedom, the corresponding deflection has been
calculated. By dividing the applied force to the computed
deflection, the stiffness component of the equivalent
column of the latticed column, corresponds to the
considered degree of freedom, has been calculated.
Following this procedure, a large number of 3-D latticed
columns have been analyzed using SAP2000 and the
equivalent stiffness components have been computed. In
all studied cases, the width of the end plates was 200 mm,
batten plates width was 100 mm and the length of all
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latticed columns was assumed to be 2100 mm, Fig. (1).
Table (1) shows some results of the analysis. In this table,
t, and 1, are respectively end and batten plates
thicknesses, b is the distance between the center lines of
both main profiles, K5, Kyand k; are displacement
stiffness elements in the X Y and Z directions, respectively
and K, is the rotational stiffness element. From the

stiffness relations, one can approximately derive the

equivalent cross-sectional area. The moment of inertia in
the plane perpendicular to the batten plates is as follows
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Fig. 1 The latticed column with the end and batten plates

Table 1 Linear analysis of the reference model (without shear deformations)

Main b t. =t k§ k¢ ks kg x2.6e —4
profile (mm) (mm) (kg/mm) (kg/mm) (kg/mm) (kg/mm)
IPE140 150 6 326.5 34286.7 333.1 36.2
IPE140 150 10 346.6 34975.6 354.2 41.4
IPE200 200 8 863.2 57777.7 1078.9 155.9
IPE240 260 10 1547.3 79283.9 2015.9 344.0
IPE240 260 14 1671.3 80053.1 2075.8 387.1

Table (2) shows the results obtained by applying these
proposed relations. In this table Aeq is the equivalent cross-

sectional area, A, is the cross-section of each main profile,
I

perpendicular to the batten plates and |CZ is the moment of
inertia of each main profile about its strong axis.

eqz is the equivalent moment of inertia in the plane

The equivalent stiffness elements of a latticed column,
in the linear state but with shear deformation, have been
defined by using solid elements and the SAP2000 program.
To compute the equivalent stiffness elements with fewer
calculations, we constructed a model which exclusively
uses the beam elements.

Table 2 A comparison between the results of Table (1) and the proposed Aeq and quz

Main b t, =t, Ay legz x€—4 2A, 2l xe—4 Error  Error
profile  (mm) — (mm)  (mm? (mm*) (mm?) (mm*) A% 1%
IPE140 150 6 3428 1224 3280 1082 4.33 11.6
IPE140 150 10 3497 1301 3280 1082 6.21 16.6
IPE200 200 8 5777 3965 5700 3880 1.33 2.3
IPE240 260 10 7928 7409 7820 7780 1.36 4.7
IPE240 260 14 8005 7629 7820 7780 2.31 1.9
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2.1. Mathematical modeling of the lattice columns

Using the results of Table (2), it can be concluded, with
a good approximation, that

q = 2A (3)

Although the equivalent moment of inertia in the plane
perpendicular to the batten plates increases in some cases

and decreases in some others with respect to |, , but still
it is fair to say that

legz =2lcz (4)

For computation of displacements in the X direction
and bending moments about the Z axis, based on the
properties of the end and batten plates in the actual model
(Fig. (2-a)), a model which is constructed by using only
the beam elements has been proposed (Fig. (2-b)). In the
regions of end and batten plates, the latticed column
behaves almost like a solid section. Since the proposed
model is constructed by only beam elements (Fig. (2-b)),
in order to consider these solid areas, the properties of end
and batten plates have been divided between these areas as
follows. In Fig. (2-b) the cross-sectional area and the
moment of inertia for the element number 1 are equal to
those of the end plate. The cross-sectional area and the
moment of inertia for the element number 2 are equal to
half of those quantities computed for the end plate and
finally, the cross-sectional area and the moment of inertia
for the element number 3 are equal to half of those
quantities computed for a batten plate.

Elements number 4, 5 and 6 are also considered
because in these areas, end and batten plates are welded to
main profile webs (Fig. (2-a)). Therefore, in bending and
lateral displacement, these areas work with the main
profile webs and make them stiffer. The properties of these
areas are given in Egns. (5) through (7). The assigned
additional cross-sectional area and the moment of inertia
for the element number 4 are equal to half those values
assigned for the main profile webs in the direction of the
end plates width (Fig. (2-b)). Therefore,

3
A=050ht, and | = 0.50( hi;Wj ()

where, h, is the end plates width, t, is the web

thickness of main profiles, A and | are the additional
cross-sectional area and the moment of inertia added to
corresponding quantities of element number 5. Thus

1 1h3t
A=0.50=ht, | and | =050 ==
(2 ewj (2 12 J (©)

For element number 6 these parameters are as follows

3
A=050(ht,) and | = o.5o(%} %

where hb is the batten plate width. The displacement

stiffness, Ky , obtained for the latticed column by
analyzing this column using both the reference model

(Table (1)) and the stiffness, ki, obtained from the

proposed model (Fig. (2-b)) by the SAP2000 program have
been compared in Table (3).

For controlling the behavior of the proposed model in
bending about the Z axis, through an intensive
investigation many columns have been analyzed. Some of
the results are summarized in Table (4). In all these cases,
one end of the latticed column is fixed and the other end is
released for displacement in the X direction and rotation
about the Z axis.

Parameters used in Table (4) are defined as follows.

A’ is the end horizontal displacement of the latticed
column analyzed by the reference model in the X direction,
0° is the end rotation of the latticed column analyzed by
the reference model about the Z axis. Abx and 6° have

the same definitions as ASX and @°, respectively but for

the latticed column analyzed by the proposed model.

Based on the results summarized in the Tables (3) and
(4), one can conclude that the proposed model is capable,
with a good accuracy, to present the behavior of the
latticed column for displacement in the X direction and
rotation about the Z axis.

Table 3 A comparison between k)s( and ki

- _ b
Mal_n b te = tb k>s< kx Error %
profile (mm) (mm) (kg/mm) (kg/mm)
IPE140 150 6 326.59 338.11 34
IPE140 150 10 346.69 347.83 0.3
IPE200 200 8 863.27 887.61 2.7
IPE240 260 10 1547.32 1492.26 -3.5
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IPE240 260 14

1671.38 1640.31 -1.8

Table 4 A comparison between the SAP2000 analysis results of the latticed columns using the reference model and the proposed model

Main b t=t, M A 0° A’ 0" error  Error
profile  (mm)  (mm) (™M™  (mm) (rad)  (mm)  (rad) A% &%
IPE140 150 6 6.0 32.1 0.030 32.5 0.031 1.3 1.6
IPE140 150 10 6.0 31.7 0.030 32.5 0.031 24 2.8
IPE200 200 8 8.0 141 0.013 14.0 0.013 -0.7 0.8
IPE240 260 10 8.0 8.0 0.007 7.9 0.007 -1.1 0.1
IPE240 260 14 104 7.9 0.007 7.9 0.007 -04 1.6

(a) The real model in the X-Y plane

(b) The proposed model in the X-Y plane

Fig. 2 Different models of the latticed column

To calculate the equivalent torsional rigidity of a
latticed column, the following features must be considered.
In the zones of end and batten plates, the latticed column
behaves like a thin-walled section, so the torsional rigidity
in these areas is obtained based on the equations derived
for thin-walled sections. Elsewhere, the latticed column
behaves similar to an open section. In the regions where
end and batten plates exist, both main profiles cannot be
twisted separately. Fig. (3) shows the approximate twisting
angle and the approximate internal forces in the cross
section. Therefore,

oS,

| (8)

where @ is the twisting angle, T is the applied torque,
J is the torsional rigidity, and f,and f, are internal

forces in the webs and flanges of each main profile,
respectively. From Fig. (3), the compatibility equation can
be written is as follows

2N, 2A
T ®

Using Egns. (8) and (9) one can obtain

f, f GJ
—LbA, +—2dA, =—0
A 1 A, 277 (10)
fl fz - -
where — and —= are the stiffnesses in the Z and X

directions in the global coordinate system, respectively.
Thus

a0 B 2TA, P

1)

where | , is defined in the following equation.
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(12)

Fig. 3 The approximate twisting‘shape of the latticed columns in
the zones without the end and batten plates

Equations (11) and (12) have been derived by
neglecting the effects of batten plates and assuming that in
twisting action due to presents of end plates, the webs and
flanges of main profiles somehow could work together and
behave as an integrated solid member. Therefore, Eqn.
(10) could be written as shown here.

1
3, = E(klbz +kyd?) (13)

The torsional rigidity in the zones with batten plates,
Fig. (4), is calculated based on the relations derived for
thin-walled sections as follows

_Q°
Ty (a4)
t

where in this equation, the numerator and denominator
are defined as

ds [b-b, b
®_ 2{ L +—} (15)
t t,  t+t t,

Q=bd,

Derivation of Eqn. (14) can be found in reference [13].
Thus,

2b%d?
b—b b

(b d (16)
ty e+t T,

J2:

CI W

t
. b ] f

Fig. 4 The section of the latticed column in the zones with batten
plates

Based on the assumptions used for computation of the
torsional rigidity, a good approximation is that the
torsional rigidities of the zones with batten plates are
uniformly distributed through the entire length of the
latticed column. Thus,

nh
Jog = I +7—2—1
eq 1 (1_2he) 2 (17)

where, N is the number of batten plates. Table (5)
shows a comparison between the results of Eqn. (17) with
the analysis results of the latticed column computed by

using the reference model. In this table, T is the applied
torque at the free end of the latticed column and J esq is the
torsional rigidity calculated from the reference model.

Table 5 A comparison between the J esq and J eq

Main b t, =t, T Joy xe—4 Jegxe—4 Error
profile (mm) (mm) (T-m) (mm®) (mm*) %
IPE140 150 6 5.8 362 348 -3.8
IPE140 150 10 5.8 414 388 -6.3
IPE200 200 8 8.0 1559 1377 -11.6
IPE240 260 10 10.0 3440 3690 6.7
IPE240 260 14 10.0 3871 3867 0.1

2.2. The equivalent parameters of the latticed columns

The equivalent moment of inertia for bending about the

A. Fooladi, M.R. Banan

Z axis based on the proposed model and the concept of
condensation can be computed using Eqn. (18) [14],
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ka2 +12g,x )
12E

legx = (18)

Since the panel-shear deformations of a latticed
column play a crucial role on the behavior of this type of
columns, the equivalent shear factor is obtained as follows
(the procedure for finding this relation can be found in the
reference [15]).

El

By using these equivalent parameters, the stiffness
matrix of the proposed super element is obtained as
follows.

kl k2
« {kT k }
2 Ky

The elements of the

(20)

stiffness matrix without

o — eqX considering the shear effects are introduced in Eqgns. (21)
egx = b 2 through (23).
-5 “
kb3
[ AqE /I 0 0 0 0 0 ]
0 12El, /I 0 0 0 6El oz /17
| O 0 12El gy /13 0 —6Elgy/I? 0 0)
! 0 0 0 Gl /| 0 0
0 0 —6Elqy /1> 0 4l gy /1 0
0 6El oqz /17 0 0 0 4El gy /1 |
— AgE/l 0 0 0 0 0
0 —12El, /1P 0 0 0 6Elgqx /17
| 0 0 —12Elgy /15 0 —BElg /17 0 )
? 0 0 0 ~Gleg /| 0 0
0 0 6Elgqx /1° 0 2Bl gox /1 0
0 —6El g, /17 0 0 0 2Bl gz /1
[ AGE/I 0 0 0 0 0]
0 12El,/1° 0 0 0 — 6l /17
‘ 0 0 12Elgqu /1° 0 BElgy /17 0
1o 0 0 Gleg /1 0 0 (23)
0 0 6Elgqx /17 0 AEl gy /1 0
0 —6Ely,/I? 0 0 0 4Bl g7 /1

2.3. Stiffness matrix of a 3-D frame element

To develop a general purpose3-D finite element
program for analyzing 3-D frames with latticed columns
subjected to gravity and lateral loads, the stiffness matrix
of a frame element, with shear deformation and axial force
effects, can be written as follows

K=K+ Kg (24)

where K, and K, are the linear and geometric

stiffness matrixes. The elements of these matrices are
given in appendix (A).

By employing the developed stiffness matrix for the
super element and stiffness matrix for the frame element, a
general purpose finite element program, named LaCE, has

208

been written in MATLAB environment.
3. Numerical Study

To show the capabilities of the proposed model, a
single bay frame is considered, Fig.(5). The right
column of the considered frame is latticed. This frame
is analyzed using both the reference model and the
proposed model, separately. Table (6) shows
displacements of the frame computed at the point of
load application using these two models by SAP2000.
One can observe that the behavior of the proposed
model follows with the behavior of the reference model
with a reasonable approximation. The second column in
Table (6) expresses the efficiency of the proposed
model in reducing the computational cost with respect
to the computational cost required for the reference
model.
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Beam: IPE 300

Main column: IPE 200
Battened Plates: 100x8 mm
End plates: 2008 mm

50000 kg

l,

5000 kg _

—En
H
1 H
50 T-m &
H

E g
= 2 H
o a g

N 2000 mm . 200 mm

Fig. 5 A simple frame with a latticed column.

Table 6 Analysis results of case (1) (using the proposed and the reference models)

Model Degrees of freedom A, Disp. (mm) A, Disp. (mm) 6 Rotation(rad)
Reference model 3438 1.68 -0.447 -0.00053
Proposed model 122 1.71 -0.447 -0.00054

Error % - 1.66 -0.070 2.04

In order to quantify the discrepancy between the
current model and the proposed model, quite a few
problems have been analyzed using the LaCE program.
Here, as an example, the results of a five story building
frame are presented, Fig. (6). In this frame two kinds of
latticed column have been used in the first and second
stories, Table (7). The beams are the same and made of
IPE300 and all columns which are not latticed are the
same and made of IPE240. First, the frame has been
linearly analyzed while considering the shear
deformations. Then, the latticed columns were replaced by

their current customary equivalent columns and the frame
has been linearly reanalyzed without considering the effect
of shear deformations. Table (8) shows the comparison
between the story drifts for these two different cases. The
second and third columns in Table (8) show the story drifts
computed from the frame analysis which employed the
proposed model and the current customary model (S.D.L,
S.D.C). One can observe from Table (8) that using the
current model instead of the latticed column causes a
significant error in the story drifts of the building frames
without lateral bracing system.

Table 7 Geometrical properties of the latticed columns used in case (2)

Element location b (mm) Main Profile Batten plates (mmxmm) End plates (mmxmm)
Lateral columns 200 IPE160 100% 10 200%10
Middle columns 200 IPE180 100%10 200%10
Table 8 The analysis results of case (2) (using the current and the proposed models)
Story S.D.L." (mm) S.D.C.™" (mm) Error %

1 102.5 73.3 28.44

2 214.9 158.2 28.49

3 251.1 190.9 23.97

4 278.7 216.1 22.46

5 297.7 233.7 21.51

+ Story drift from the proposed model
++ Story drift from the current model

A. Fooladi, M.R. Banan
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Fig. 6 A five story building frame.

4. Conclusion

Based on the relations obtained for calculation of the
equivalent parameters of the proposed super-element and
also the results shown in the Tables (1) through (5), one
can conclude that the stiffness matrix of the proposed
super element, (Eqgn. 20), is capable of providing a suitable
model of a latticed column stiffness matrix. From the case
studies and the results summarized in Tables (6) and (8), it
is shown that the current and customary models of latticed
columns cannot suitably represent the behavior of these
columns. Finally, it is demonstrated that the proposed
model can achieve this goal with a good approximation
and a considerable reduction in computational cost.

Symbols

A cross-sectional area (Eqn.(1), L2)

A cross-sectional area of main profiles (Table (2), L2
)

equivalent cross-sectional area of the latticed

column (Eqgn. (1), L?)
distance between the center lines of main profiles
(Table (1), L)

by flang width of the main profile (Eqn. (15), L)
d depth of the main profile (Eqn. (15), L)

E modulus of elasticity (Eqn.(1), ML)
approximate force due to twist in the web of main

f
! profiles (Egn. (8), MLT )
f approximate force due to twist in the web of main
2 profiles (Egn. (8), MLT 2)
210

shear modulus (Egn. (8), ML)

batten plate width (Fig. (2-b), L)

end plate width (Fig. (2-b), L)

moment of inertia (Eqn. (2), L*)

moment of inertias of the main profiles about their
strong axes (Eqn. (2), L*)

equivalent moment of inertia of the latticed column
in the X-Y plane (Eqn. (18), L4)

equivalent moment of inertia of the latticed column
in the Y-Z plane (Eqn. (2), L4)

torsional rigidity (Eqn.(8), MLT 2)

equivalent torsional rigidity of the latticed column
in regions with no batten plates (Egn.(13), MLT‘z)
equivalent torsional rigidity of the latticed column
in regions with batten plates (Eqn. (16), MLT )
equivalent torsional rigidity of the latticed column
(Egn. (17), MLT?)

stiffness matrix of the super element (Eqgn. (20),
ML)

linear stiffness matrix (Eqn. (24), ML’l)

geometric stiffness matrix (Eqn. (24), ML’l)
displacement stiffness of the reference model in the
X-direction (Table (1), ML™)

displacement stiffness of the reference model in the
Y-direction(Table (1), ML™)

displacement stiffness of the reference model in the
Z-direction (Table (1), ML™)

torsional rigidity of the reference model (Table (1),
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ML)
| length of the latticed column (Eqgn. (1), L)
M bending moment (Table (4), ML)
n number of batten plates (Egn. (17))
T twisting torque (Eqgn. (8), ML)
ty thickness of the batten plates (Table (1), L)

t thickness of the end plates (Table (1), L)
ts flang thickness of the main profiles (Eqn. (15), L)

ty web thickness of the main profiles (Eqgn. (15), L)
a equivalent shear factor of the latticed column in the
X X-direction (Eqn. (19))
0 twisting angle (Eqgn. (8))
o bepding angle in the proposed model about the Z-
axis (Table (4))
s bending angle in the reference model about the Z-
o axis (Table (4))
lateral displacement in the latticed column in the Z-
Ay direction due to the torque about the Y-axis (Fig.
Q). L)
lateral displacement in the latticed column in the X-
A, direction due to the torque about the Y-axis (Fig.

@), L)

AR lateral displacement in the proposed model in the
X X-direction (Table (4), L)

AS lateral displacement in the reference model in the
X X-direction (Table (4), L)

Appendix (A)

The stiffness matrix of the frame element with shear
and axial deformations is as follows

K=K¢+Kq4 (A-1)

where K, is the linear part and K, is the geometric

part of the stiffness matrix defined in the following
equations

AE 12E1, 6El,
e, - E . :

;v €, =
a " afa? +12g,)

ala?+12g,) © ° a

6EIl, a2 12El,
€y = ;B =| —+0
2y ia2+1Zgyi ol Y aia2+129yi
where a is the length of the beam element, A is cross-
sectional area, E is modulus of elasticity, G is shear

modulus, I, and |, are moment of inertias about the Yy

y
and z axes, respectively Fig. (5), and J is torsional
moment of inertia. Parameters g, and g, represent the
shear deformation effects and are defined as follows

A. Fooladi, M.R. Banan

e, =
* " (a?+129,)

a’ 12El, _ GJ . 12EI1,
€, = ?_gz =—

By = ala? +12g, i

kle k29:|
K, = (A-2)
) [kge Kse 12x12
k k
and Kg=[k$9 kzg} (A-3)
20 720 hioao

The elements of the matrix K, are

e, O 0 0 O 0
0 e 0 0 0 ey
K 0 0 ¢, 0 -e, O
©7lo 0 e 0 0
5
0 0 -6, 0 &, O
10 &, O 0 0 e
- 0 0 0 0 0|
0 -¢, O 0 0 ey
0 0 -¢g 0 -eg 0
2= 5 oy —es oy 0 (A-4)
0 0 &y 0 &, O
0 -e, O 0 0 ey
(e 0 0 0 0 0 |
0 € 0 0 0 - 2z
o = 0 0 ¢, 0 e
®*770 0 0 & 0 O
0 0 e, 0 & 0
|10 —e, 0 0 0 e |

The parameters used in Egn. (A-4) are defined in Eqgn.
(A-5).

e (@ ) 128
© 3 Y Jala? +12g,)

(A-5)
B a2 12EIy
16 7Y )ala? +129yi
_ El,
J: = a,GA AS
~ Ely ( - )
9= ayGA

The elements of geometric stiffness matrix, K, , are
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Cy, 0 0 0 Cy,

0 O 0 0 0 0

0 —c, 0 0 0 ¢y
K —PO 0 -¢, 0 -¢, O (A-7)
2710 0 0 -¢ 0 0

0 O Gy 0 ¢, O

0 -¢c,, O 0 0 ¢y

0 0 0 0 O 0 |

0 ¢ 0 0 0 -cy
S B

c; O 0
0 0 ¢, 0 ¢, O
0 -¢c,, 0 0 0 ¢ |

The parameters that used in these matrixes are defined
in Egn. (A-8).

C, = [1.2{;13 +144¢2 /a+24gza]/<a2 +1Zgz)2
¢,, =0.1a* /(a2 +1292)2

Cyy = {%af’ +12g22a+292a3}/(a2 +12gz)2

Cap = E—ga5 -2g,a° —12922}/(a2 +1292)2
cs = J/(Aa) (A-8)

Gy = [1.2a3 +144g; /a+ 24gya]/(a2 +129y)2

Cyy =0.1a° /(a2 +1Zgy)2
2
Cay = {EaS +12ga+ Zgyas}/(a2 +129y)2

-1
Cay = {%as -29,a° —12g§}/(a2 +1zgy)2
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