Volume 1, Issue 2 (December 2003)                   IJCE 2003, 1(2): 72-81 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khaloo A, MOLAEE A.. FREEZE AND THAW, AND ABRASION RESISTANCE OF STEEL FIBER REINFORCED CONCRETE (SFRC). IJCE 2003; 1 (2) :72-81
URL: http://ijce.iust.ac.ir/article-1-143-en.html
Abstract:   (29387 Views)
An experimental program was carried out to investigate the behavior of steel, fiber reinforced concrete (SFRC) under abrasion and cycles of freeze and them. Compression and flexural tests were also performed in order to reach a comprehensive conclusion of the response. In total, over 200 specimens were tested The test variables included two concrete strength., (i. e., 28 MPa as Normal Strength (NSFRC) and 42 MPa as Medium Strength (MSFRC)), four volumetric percentage of fibers (i.e., 0%, 0,5%, 1.0% and 1.5%) and two fiber lengths (i.e.. 25mm and 35rnrn).Cube specimens were tested according to ASTM C6661n-ocedrrre B using 100 cycles of freeze and thaw. The Los Angeles test method for testing aggregate was used to evaluate the abrasion resistance of SFRC.Test results of1VSFRCptesertted improvements up to 39% and 32 % in cylindrical and cubic compressive strength, respectively. and 88�o in modulus of rupture, 57% in resistance against abrasion based oil weight loss and 40% against compressive strength reduction due to freeze and thaw cycles. The corresponding improvements for MSFRC were 18%, 16%, 48%, 53% and 46% respectively.Increase in cocncrete strength from 28 Ala to 42 MPa provided higher freeze and thaw and abrasion resistance than addition of 1.5% of steel fibers to the normal strength concrete matrix.
Full-Text [PDF 15 kb]   (2341 Downloads)    
Type of Study: Research Paper |

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb