Abstract: (13195 Views)
In this paper a general procedure for automated minimum weight design of twodimensional
steel frames under seismic loading is proposed. The proposal comprises two parts:
a) Formulation of automated design of frames under seismic loading and b) introduction of an
optimization engine and the improvement made on it for the solution of optimal design. Seismic
loading, that depends on dynamic characteristics of structure, is determined using "Equivalent
static loading" scheme. The design automation is sought via formulation of the design problem in
the form of a standard optimization problem in which the design requirements is treated as
optimization constraints.
The Optimality Criteria (OC) method has been modified/improved and used for solution of the
optimization problem. The improvement in (OC) algorithm relates to simultaneous identification of
active set of constraints and calculation of corresponding Lagrange multipliers. The modification
has resulted in rapid convergence of the algorithm, which is promising for highly nonlinear optimal
design problems. Two examples have been provided to show the procedure of automated design and
optimization of seismic-resistant frames and the performance and capability of the proposed
algorithm.
Type of Study:
Research Paper |