Volume 10, Issue 4 (December 2012)                   IJCE 2012, 10(4): 328-336 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Karamouz M, Fallahi M, Nazif S, Rahimi Farahani M. Long Lead Runoff Simulation Using Data Driven Models. IJCE 2012; 10 (4) :328-336
URL: http://ijce.iust.ac.ir/article-1-414-en.html
Abstract:   (9472 Views)

Runoff simulation is a vital issue in water resource planning and management. Various models with different levels of accuracy

and precision are developed for this purpose considering various prediction time scales. In this paper, two models of IHACRES

(Identification of unit Hydrographs And Component flows from Rainfall, Evaporation and Streamflow data) and ANN (Artificial

Neural Network) models are developed and compared for long term runoff simulation in the south eastern part of Iran. These

models have been utilized to simulate5-month runoff in the wet period of December-April. In IHACRES application, first the

rainfall is predicted using climatic signals and then transformed to runoff. For this purpose, the daily precipitation is downscaled

by two models of SDSM (Statistical Downscaling Model) and LARS-WG (Long Ashton Research Station-Weather Generator). The

best results of these models are selected as IHACRES model input for simulating of runoff. In application of the ANN model,

effective large scale signals of SLP(Sea Level Pressure), SST(Sea Surface Temperature), DSLP and runoff are considered as model

inputs for the study region. The performances of the considered models in real time planning of water resources is evaluated by

comparing simulated runoff with observed data and through SWSI(Surface Water Scarcity Index) drought index calculation.

According to the results, the IHACRES model outperformed ANN in simulating runoff in the study area, and its results are more

likely to be comparable with the observed values and therefore, could be employed with more certainty.

Full-Text [PDF 484 kb]   (3927 Downloads)    
Type of Study: Research Paper | Subject: Water Resources

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb