Volume 2, Issue 3 (September 2004)                   IJCE 2004, 2(3): 141-148 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dastorani M T, Wright N G. A HYDRODYNAMIC/NEURAL NETWORK APPROACH FOR ENHANCED RIVER. IJCE 2004; 2 (3) :141-148
URL: http://ijce.iust.ac.ir/article-1-580-en.html
Abstract:   (11124 Views)
In this study, an artificial neural networks (ANN) was used to optimise the results obtained from a hydrodynamic model of river flow prediction. The study area is Reynolds Creek Experimental Watershed in southwest Idaho, USA. First a hydrodynamic model was constructed to predict flow at the outlet using time series data from upstream gauging sites as boundary conditions. The model, then was replaced with an ANN model using the same inputs. Finally a hybrid model was employed in which the error of the hydrodynamic model is predicted using an ANN model to optimise the outputs. Simulations were carried out for two different conditions (with and without data from a recently suspended gauging site) to evaluate the effect of this suspension in hydrodynamic, ANN and the hybrid model. Using ANN in this way, the error produced by the hydrodynamic model was predicted and thereby, the results of the model were improved.
     
Type of Study: Research Paper |

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | International Journal of Civil Engineering

Designed & Developed by : Yektaweb