Volume 11, Number 2 and A (Transaction A: Civil Engineering, June 2013)                   IJCE 2013, 11(2 and A): 90-99 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Torres-Machi C, Yepes V, Alcala J, Pellicer E. Optimization of high-performance concrete structures by variable neighborhood search. IJCE. 2013; 11 (2) :90-99
URL: http://ijce.iust.ac.ir/article-1-660-en.html

Abstract:   (6387 Views)
This paper describes a methodology in designing high-performance concrete for simply supported beams, using a hybrid optimization strategy based on a variable neighborhood search threshold acceptance algorithm. Three strategies have been applied to discrete optimization of reinforced concrete beams: Variable Neighborhood Descent (VND), Reduced Neighborhood Search (RNS) and Basic Variable Neighborhood Search (BVNS). The problem includes 14 variables: two geometrical one material type one mix design and 10 variables for the reinforcement setups. The algorithms are applied to two objective functions: the economic cost and the embedded CO2 emissions. Firstly, this paper presents the application of these three different optimization strategies, which are evaluated by fitting the set of solutions obtained to a three-parameter Weibull distribution function. The Variable Neighborhood Descent with Threshold Accepting acceptance strategy algorithm (VND-TA) results as the most reliable method. Finally, the study presents a parametric study of the span length from 10 to 20 m in which it can be concluded that economic and ecological beams show a good parabolic correlation with the span length.
Full-Text [PDF 422 kb]   (1697 Downloads)    
Type of Study: Research Paper | Subject: Structure- Concrete

Add your comments about this article : Your username or email:
Write the security code in the box

© 2015 All Rights Reserved | International Journal of Civil Engineering

Designed & Developed by : Yektaweb